Skip to main content
Log in

Modeling of a Smart Nano Force Sensor Using Finite Elements and Neural Networks

  • Research Article
  • Published:
International Journal of Automation and Computing Aims and scope Submit manuscript

Abstract

The aim of this work is to model and analyze the behavior of a new smart nano force sensor. To do so, the carbon nanotube has been used as a suspended gate of a metal-oxide-semiconductor field-effect transistor (MOSFET). The variation of the applied force on the carbon nanotube (CNT) generates a variation of the capacity of the transistor oxide-gate and therefore the variation of the threshold voltage, which allows the MOSFET to become a capacitive nano force sensor. The sensitivity of the nano force sensor can reach 0.124 31 V/nN. This sensitivity is greater than results in the literature. We have found through this study that the response of the sensor depends strongly on the geometric and physical parameters of the CNT. From the results obtained in this study, it can be seen that the increase in the applied force increases the value of the MOSFET threshold voltage VTh. In this paper, we first used artificial neural networks to faithfully reproduce the response of the nano force sensor model. This neural model is called direct model. Then, secondly, we designed an inverse model called an intelligent sensor which allows linearization of the response of our developed force sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Rougeot, S. Régnier, N. Chaillet. Forces analysis for micro–manipulation. In Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, Espoo, Finland, pp. 105–110, 2005. DOI: 10.1109/CIRA.2005.1554262.

    Google Scholar 

  2. N. Kato, I. Suzuki, H. Kikuta, K. Iwata. Force–balancing microforce sensor with an optical–fiber interferometer. Review of Scientific Instruments, vol. 68, no. 6, pp. 2475–2478, 1997. DOI: 10.1063/1.1148171.

    Article  Google Scholar 

  3. M. Kalantari, J. Dargahi, J. Kövecses, M. G. Mardasi, S. Nouri. A new approach for modeling piezoresistive force sensors based on semiconductive polymer composites. IEEE/ASME Transactions on Mechatronics, vol. 17, no. 3, pp. 572–581, 2012. DOI: 10.1109/TMECH.2011.2108664.

    Article  Google Scholar 

  4. A. S. Krajewski, K. Magniez, R. J. N. Helmer, V. Schrank. Piezoelectric force response of novel 2D textile based PVDF sensors. IEEE Sensors Journal, vol. 13, no. 12, pp. 4743–4748, 2013. DOI: 10.1109/JSEN.2013.2274151.

    Article  Google Scholar 

  5. K. F. Lei, K. F. Lee, M. Y. Lee. A flexible PDMS capacitive tactile sensor with adjustable measurement range for plantar pressure measurement. Microsystem Technologies, vol. 20, no. 7, pp. 1351–1358, 2014. DOI: 10.1007/s00542–013–1918–5.

    Article  Google Scholar 

  6. E. Peiner, L. Doering. Force calibration of stylus instruments using silicon microcantilevers. Sensors and Actuators A, vol. 123–124, pp. 137–145, 2005. DOI: 10.1016/j.sna. 2005.02.031.

    Google Scholar 

  7. R. Pérez, N. Chaillet, K. Domanski, P. Janus, P. Grabiec. Fabrication, modeling and integration of a silicon technology force sensor in a piezoelectric micro–manipulator. Sensors and Actuators A, vol. 128, no. 2, pp. 367–375, 2006. DOI: 10.1016/j.sna.2006.01.042.

    Article  Google Scholar 

  8. T. L. Li, L. Q. Li, G. Y. Zhang. A nano–scaled force sensor based on a photonic crystal nanocavity resonator and a microcantilever. ECS Journal of Solid State Science and Technology, vol. 3, no. 7, pp. Q146–Q151, 2014. DOI: 10. 1149/2.0151407jss.

    Google Scholar 

  9. L. Q. Li, T. L. Li, F. T. Ji, W. P. Song, G. Y. Zhang, Y. Li. The effects of optical and material properties on designing of a photonic crystal mechanical sensor. Microsystem Technologies, vol. 23, no. 8, pp. 3271–3280, 2017. DOI: 10.1007/s00542–016–3186–7.

    Article  Google Scholar 

  10. S. Iijima. Helical microtubules of graphitic carbon. Nature, vol. 354, no. 6348, pp. 56–58, 1991. DOI: 10.1038/354056a0.

    Article  Google Scholar 

  11. A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour, S. W. Joo. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Research Letters, vol. 9, no. 1, pp. 393, 2014. DOI: 10.1186/1556–276X–9–393.

    Article  Google Scholar 

  12. O. Kanoun, C. Müller, A. Benchirouf, A. Sanli, T. N. Dinh, A. Al–Hamry, L. Bu, C. Gerlach, A. Bouhamed. Flexible carbon nanotube films for high performance strain sensors. Sensor, vol. 14, no. 6, pp. 10042–10071, 2014. DOI: 10.3390/s140610042.

    Article  Google Scholar 

  13. Y. G. Li, R. Ahuja, J. A. Larsson. Communication: Origin of the difference between carbon nanotube armchair and zigzag ends. The Journal of Chemical Physics, vol. 140, no. 9, Article number 091102, 2014. DOI: 10.1063/1.4867744.

  14. L. Marty, A. Iaia, M. Faucher, V. Bouchiat, C. Naud, M. Chaumont, T. Fournier, A. M. Bonnot. Self–assembled single wall carbon nanotube field effect transistors and AFM tips prepared by hot filament assisted CVD. Thin Solid Films, vol. 501, no. 1–2, pp. 299–302, 2006. DOI: 10.1016/j.tsf.2005.07.218.

    Google Scholar 

  15. C. H. Ke, H. D. Espinosa. Feedback controlled nanocantilever device. Applied Physics Letter, vol. 85, no. 4, pp. 681–683, 2004. DOI: 10.1063/1.1767606.

    Article  Google Scholar 

  16. D. Mtsuko, A. Koshio, M. Yudasaka, S. Iijima, M. Ahlskog. Measurements of the transport gap in semiconducting multiwalled carbon nanotubes with varying diameter and length. Physical Review B, vol. 91, no. 19, Article number 195426, 2015. DOI: 10.1103/PhysRevB.91.195426.

    Google Scholar 

  17. X. L. Tang, A. El Hami, K. El–Hami. Mechanical properties investigation of single–walled carbon nanotube using finite element method. Key Engineering Materials, vol. 550, pp. 179–187, 2013. DOI: 10.4028/www.scientific. net/KEM.550.179.

    Article  Google Scholar 

  18. C. Mungra, J. F. Webb. Free vibration analysis of single–walled carbon nanotubes based on the continuum finite element method. Global Journal of Technology & Optimization, vol. 6, no. 2, Article number 1000173, 2015. Doi: 10.4172/2229–8711.1000173.

    Google Scholar 

  19. C. Y. Li, T. W. Chou. A structural mechanics approach for the analysis of carbon nanotubes. International Journal of Solids and Structures, vol. 40, no. 10, pp. 2487–2499, 2003. DOI: 10.1016/S0020–7683(03)00056–8.

    MATH  Google Scholar 

  20. D. H. Wu, W. T. Chien, C. S. Chen, H. H. Chen. Resonant frequency analysis of fixed–free single–walled carbon nanotube–based mass sensor. Sensors and Actuators A, vol. 126, no. 1, pp. 117–121, 2006. Doi: 10.1016/j.sna.2005. 10.005.

    Article  Google Scholar 

  21. S. Prabhu, S. Bhaumik, B. K. Vinayagam. Finite element modeling and analysis of zigzag and armchair type single wall carbon nanotube. Journal of Mechanical Engineering Research, vol. 4, no. 8, pp. 260–266, 2012. DOI: 10.5897/JMER12.025.

    Google Scholar 

  22. I. H. Song, P. K. Ajmera. A laterally movable gate field effect transistor. Journal of Microelectromechanical Systems, vol. 18, no. 1, pp. 208–216, 2009. Doi: 10.1109/JMEMS.2008.2008623.

    Google Scholar 

  23. F. Djeffal, Z. Dibi, M. L. Hafiane, D. Arar. Design and simulation of a nanoelectronic DG MOSFET current source using artificial neural networks. Materials Sciences and Engineering: C, vol. 27, no. 5–8, pp. 1111–1116, 2007. Doi: 10.1016/j.msec.2006.09.005.

    Google Scholar 

  24. F. Djeffal, S. Guessasma, A. Benhaya, M. Chahdi. An analytical approach based on neural computation to estimate the lifetime of deep submicron MOSFETs. Semiconductor Science and Technology, vol. 20, no. 2, pp. 158–164, 2005. DOI: 10.1088/0268–1242/20/2/010.

    Article  Google Scholar 

  25. F. Menacer, A. Kadri, F. Djeffal, Z. Dibi, H. Ferhati. Modeling of boron nitride–based nanotube biological sensor using neural networks. Proceedings of the 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, Sousse, Tunisia, 2016. DOI: 10.1109/STA.2016.7951987.

    Book  Google Scholar 

  26. F. Menacer, A. Kadri, F. Djeffal, Z. Dibi. Modeling and investigation of smart capacitive pressure sensor using artificial neural networks. Proceedings of the 6th International Conference on Systems and Control, Batna, Algeria, 2017. DOI: 10.1109/ICoSC.2017.7958746.

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Mechanical Engineering Laboratory of the University of Biskra, Algeria, for their important help and support in developing the numerical models using ANSYS simulator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Menacer.

Additional information

Recommended by Associate Editor Xun Chen

Farid Menacer received the B. Eng. degree in electronics control, and the M. Eng. degree in instrumentation from Batna University, Algeria in 1996 and 2011, respectively.

His research interests include neuronal networks, sensors and intelligent system.

Abdelmalek Kadr received the B. Eng. degree in electronics control, and the M. Eng. degrees in instrumentation from Batna University, Algeria in 1995 and 2012, respectively.

His research interests include neuronal networks, sensors, intelligent system and nanotechnology

Zohir Dibi received the B. Sc. degree in electronics engineering from University of Setif, Algeria in 1994, the M. Eng. and Ph. D. degrees from University of Constantine, Algeria in 1998 and 2002, respectively. He has been the head of Electronics Department. He is currently an assistant professor in Department of Electrical and Electronic Engineering and vice-dean of the Faculty of Engineering, Batna University, Algeria.

His research interests include neural networks, sensors, smart sensors, and organic devices.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menacer, F., Kadr, A. & Dibi, Z. Modeling of a Smart Nano Force Sensor Using Finite Elements and Neural Networks. Int. J. Autom. Comput. 17, 279–291 (2020). https://doi.org/10.1007/s11633-018-1155-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-018-1155-6

Keywords

Navigation