Skip to main content
Log in

Accurate Classification of EEG Signals Using Neural Networks Trained by Hybrid Population-physic-based Algorithm

  • Research Article
  • Published:
International Journal of Automation and Computing Aims and scope Submit manuscript

Abstract

A brain-computer interface (BCI) system is one of the most effective ways that translates brain signals into output commands. Different imagery activities can be classified based on the changes in μ and β rhythms and their spatial distributions. Multi-layer perceptron neural networks (MLP-NNs) are commonly used for classification. Training such MLP-NNs has great importance in a way that has attracted many researchers to this field recently. Conventional methods for training NNs, such as gradient descent and recursive methods, have some disadvantages including low accuracy, slow convergence speed and trapping in local minimums. In this paper, in order to overcome these issues, the MLP-NN trained by a hybrid population-physics-based algorithm, the combination of particle swarm optimization and gravitational search algorithm (PSOGSA), is proposed for our classification problem. To show the advantages of using PSOGSA that trains NNs, this algorithm is compared with other meta-heuristic algorithms such as particle swarm optimization (PSO), gravitational search algorithm (GSA) and new versions of PSO. The metrics that are discussed in this paper are the speed of convergence and classification accuracy metrics. The results show that the proposed algorithm in most subjects of encephalography (EEG) dataset has very better or acceptable performance compared to others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Aghaei, M. S. Mahanta, K. N. Plataniotis. Separable common spatio-spectral patterns for motor imagery BCI systems. IEEE Transactions on Biomedical Engineering, vol. 63, no. 1, pp. 15–29, 2016. DOI: 10.1109/TBME.2015. 2487738.

    Google Scholar 

  2. D. D. Huang, K. Qian, D. Y. Fei, W. C. Jia, X. D. Chen, O. Bai. Electroencephalography (EEG)-based brain-computer interface (BCI): A 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 20, no. 3, pp. 379–388, 2012. DOI: 10.1109/TNSRE.2012.2190299.

    Google Scholar 

  3. K. LaFleur, K. Cassady, A. Doud, K. Shades, E. Rogin, B. He. Quadcopter control in three-dimensional space using a noninvasive motor imagery based brain-computer interface. Journal of Neural Engineering, vol. 10, no. 4, Article number 046003, 2013. DOI: 10.1088/1741-2560/10/4/046 003/meta.

    Google Scholar 

  4. J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, T. M. Vaughan. Brain-computer interfaces for communication and control. Clinical Neurophysiology, vol. 113, no. 6, pp. 767–791, 2002. DOI: 10.1016/S1388-2457(02)00057-3.

    Google Scholar 

  5. T. M. Vaughan. Guest editorial brain-computer interface technology: A review of the second international meeting. IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, no. 2, pp. 94–109, 2003. DOI: 10.1109/TNSRE.2003.814799.

    Google Scholar 

  6. C. R. Hema, M. P. Paulraj, S. Yaacob, A. H. Adom, R. Nagarajan. EEG motor imagery classification of hand movements for a brain machine interface. Biomedical Soft Computing and Human Sciences, vol. 14, no. 2, pp. 49–56, 2009. DOI: 10.24466/ijbschs.14.2_49.

    Google Scholar 

  7. B. Blankertz, G. Dornhege, M. Krauledat, K. R. Muller, G. Curio. The non-invasive Berlin brain-computer interface: Fast acquisition of effective performance in untrained subjects. NeuroImage, vol. 37, no. 2, pp. 539–550, 2007. DOI: 10.1016/j.neuroimage.2007.01.051.

    Google Scholar 

  8. X. Y. Yu, P. Chum, K. B. Sim. Analysis the effect of PCA for feature reduction in non-stationary EEG based motor imagery of BCI system. Optik-International Journal for Light and Electron Optics, vol. 125, no. 3, pp. 1498–1502, 2014. DOI: 10.1016/j.ijleo.2013.09.013.

    Google Scholar 

  9. R. N. Vigário. Extraction of ocular artefacts from EEG using independent component analysis. Electroencephalography and Clinical Neurophysiology, vol. 103, no. 3, pp. 395–404, 1997. DOI: 10.1016/S0013-4694(97)00042-8.

    Google Scholar 

  10. J. B. Tenenbaum, V. de Silva, J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, vol. 290, no. 5500, pp. 2319–2323, 2000. DOI: 10.1126/science.290.5500.2319.

    Google Scholar 

  11. T. Wu, G. Z. Yan, B. H. Yang, H. Sun. EEG feature extraction based on wavelet packet decomposition for brain computer interface. Measurement, vol. 41, no. 6, pp. 618–625, 2008. DOI: 10.1016/j.measurement.2007.07.007.

    Google Scholar 

  12. H. Ramoser, J. Muller-Gerking, G. Pfurtscheller. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 4, pp. 441–446, 2000. DOI: 10.1109/86. 895946.

    Google Scholar 

  13. G. Pfurtscheller, C. Neuper, A. Schlogl, K. Lugger. Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 3, pp. 316–325, 1998. DOI: 10.1109/86.712230.

    Google Scholar 

  14. S. Lemm, C. Schafer, G. Curio. BCI competition 2003-data set III: Probabilistic modeling of sensorimotor mu rhythms for classification of imaginary hand movements. IEEE Transactions on Biomedical Engineering, vol. 51, no. 6, pp. 1077–1080, 2004. DOI: 10.1109/TBME.2004. 827076.

    Google Scholar 

  15. S. M. Zhou, J. Q. Gan, F. Sepulveda. Classifying mental tasks based on features of higher-order statistics from EEG signals in brain-computer interface. Information Sciences, vol. 178, no. 6, pp. 1629–1640, 2008. DOI: 10.1016/j.ins.2007. 11.012.

    Google Scholar 

  16. Y. L. Ma, X. H. Ding, Q. S. She, Z. Z. Luo, T. Potter, Y. C. Zhang. Classification of motor imagery EEG signals with support vector machines and particle swarm optimization. Computational and Mathematical Methods in Medicine, vol. 2016, Article number 4941235, 2016. DOI: 10.1155/2016/4941235.

    MathSciNet  MATH  Google Scholar 

  17. A. Subasi, E. Erçelebi. Classification of EEG signals using neural network and logistic regression. Computer Methods and Programs in Biomedicine, vol. 78, no. 2, pp. 87–99, 2005. DOI: 10.1016/j.cmpb.2004.10.009.

    MATH  Google Scholar 

  18. D. Whitley. A genetic algorithm tutorial. Statistics and Computing, vol. 4, no. 2, pp. 65–85, 1994. DOI: 10.1007/BF00175354.

    Google Scholar 

  19. J. Kennedy, R. Eberhart. Particle swarm optimization. In Proceedings of International Conference on Neural Networks, Perth, Australia, pp. 1942–1948, 1995. DOI: 10.1109/ICNN.1995.488968.

    Google Scholar 

  20. M. Dorigo, V. Maniezzo, A. Colorni. Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 26, no. 1, pp. 29–41, 1996. DOI: 10.1109/3477.484436.

    Google Scholar 

  21. X. H. Shi, Y. C. Liang, H. P. Lee, C. Lu, L. M. Wang. An improved GA and a novel PSO-GA-based hybrid algorithm. Information Processing Letters, vol. 93, no. 5, pp. 255–261, 2005. DOI: 10.1016/j.ipl.2004.11.003.

    MathSciNet  MATH  Google Scholar 

  22. A. J. Ouyang, Y. Q. Zhou. An improved PSO-ACO algorithm for solving large-scale TSP. Advanced Materials Research, vol. 143–144, pp. 1154–1158, 2011. DOI: 10.4028/www.scientific.net/AMR.143-144.1154.

    Google Scholar 

  23. S. T. Li, M. K. Tan, I. W. Tsang, J. T. Y. Kwok. A hybrid PSO-BFGS strategy for global optimization of multimodal functions. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 41, no. 4, pp. 1003–1014, 2011. DOI: 10.1109/TSMCB.2010.2103055.

    Google Scholar 

  24. S. Mirjalili, S. Z. M. Hashim. A new hybrid PSOGSA algorithm for function optimization. In Proceedings of International Conference on Computer and Information Application, Tianjin, China, pp. 374–377, 2010. DOI: 10.1109/ICCIA.2010.6141614.

    Google Scholar 

  25. S. Q. Sun, Q. K. Peng. A hybrid PSO-GSA strategy for high-dimensional optimization and microarray data clustering. In Proceedings of IEEE International Conference on Information and Automation, Hailar, China, pp. 41–46, 2014. DOI: 10.1109/ICInfA.2014.6932623.

    Google Scholar 

  26. H. Aminzadeh, M. Miri. Optimal placement of phasor measurement units to obtain network observability using a hybrid PSO-GSA algorithm. Australian Journal of Electrical and Electronics Engineering, vol. 12, no. 4, pp. 342–349, 2015. DOI: 10.1080/1448837X.2015.1092929.

    Google Scholar 

  27. E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi. GSA: A gravitational search algorithm. Information Sciences, vol. 179, no. 13, pp. 2232–2248, 2009. DOI: 10.1016/j.ins. 2009.03.004.

    MATH  Google Scholar 

  28. Y. Jiang, T. S. Hu, C. C. Huang, X. N. Wu. An improved particle swarm optimization algorithm. Applied Mathematics and Computation, vol. 193, no. 1, pp. 231–239, 2007. DOI: 10.1016/j.amc.2007.03.047.

    MATH  Google Scholar 

  29. T. Geetha, M. Sathya. Modified particle swarm optimization (MPSO) algorithm for web service selection (WSS) problem. In Proceedings of International Conference on Data Science & Engineering, Cochin, India, pp. 113–116, 2012. DOI: 10.1109/ICDSE.2012.6281954.

    Google Scholar 

  30. G. Q. Bao, K. F. Mao. Particle swarm optimization algorithm with asymmetric time varying acceleration coefficients. In Proceedings of IEEE International Conference on Robotics and Biomimetics, Guilin, China, pp. 2134–2139, 2009. DOI: 10.1109/ROBIO.2009.5420504.

    Google Scholar 

  31. C. Cortes, V. Vapnik. Support-vector networks. Machine Learning, vol. 20, no. 3, pp. 273–297, 1995. DOI: 10.1007/BF00994018.

    MATH  Google Scholar 

  32. N. S. Altman. An introduction to kernel and nearestneighbor nonparametric regression. The American Statistician, vol. 46, no. 3, pp. 175–185, 1992. DOI: 10.1080/0003 1305.1992.10475879.

    MathSciNet  Google Scholar 

  33. M. Wessel. Pioneering Research into Brain Computer Interfaces, Master dissertation, Delft University of Technology, the Netherlands, 2006.

    Google Scholar 

  34. H. Jasper, W. Penfield. Electrocorticograms in man: Effect of voluntary movement upon the electrical activity of the precentral gyrus. Archiv fur Psychiatrie und Nervenkrankheiten, no. 1–2, pp. 163–174, 1949. DOI: 10.1007/BF01062488.

    Google Scholar 

  35. Z. J. Koles. The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG. Electroencephalography and Clinical Neurophysiology, vol. 79, no. 6, pp. 440–447, 1991. DOI: 10.1016/0013-4694 (91)90163-X.

    Google Scholar 

  36. V. Abedifar, M. Eshghi, S. Mirjalili, S. M. Mirjalili. An optimized virtual network mapping using PSO in cloud computing. In Proceedings of the 21st Iranian Conference on Electrical Engineering, Mashhad, Iran, 2013. DOI: 10.1109/IranianCEE.2013.6599723.

    Google Scholar 

  37. L. S. Nguyen, D. Frauendorfer, M. S. Mast, D. Gatica-Perez. Hire me: Computational inference of hirability in employment interviews based on nonverbal behavior. IEEE Transactions on Multimedia, vol. 16, no. 4, pp. 1018–1031, 2014. DOI: 10.1109/TMM.2014.2307169.

    Google Scholar 

  38. P. Auer, H. Burgsteiner, W. Maass. A learning rule for very simple universal approximators consisting of a single layer of perceptrons. Neural Networks, vol. 21, no. 5, pp. 786–795, 2008. DOI: 10.1016/j.neunet.2007.12.036.

    MATH  Google Scholar 

  39. M. R. Mosavi, M. Khishe. Training a feed-forward neural network using particle swarm optimizer with autonomous groups for sonar target classification. Journal of Circuits, Systems and Computers, vol. 26, no. 11, Article number 1750185, 2017. DOI: 10.1142/S0218126617501857.

    Google Scholar 

  40. M. Khishe, M. R. Mosavi, M. Kaveh. Improved migration models of biogeography-based optimization for sonar dataset classification by using neural network. Applied Acoustics, vol. 118, pp. 15–29, 2017. DOI: 10.1016/j.apacoust. 2016.11.012.

    Google Scholar 

  41. M. R. Mosavi, M. Khishe, A. Ghamgosar. Classification of sonar data set using neural network trained by gray wolf optimization. Neural Network World, vol. 26, no. 4, pp. 393–415, 2016. DOI: 10.14311/NNW.2016.26.023.

    Google Scholar 

  42. M. R. Mosavi, M. Khishe, M. Akbarisani. Neural network trained by biogeography-based optimizer with chaos for sonar data set classification. Wireless Personal Communications, vol. 95, no. 4, pp. 4623–4642, 2017. DOI: 10.1007/s11277-017-4110-x.

    Google Scholar 

  43. J. Müller-Gerking, G. Pfurtscheller, H. Flyvbjerg. Designing optimal spatial filters for single-trial EEG classification in a movement task. Clinical Neurophysiology, vol. 110, no. 5, pp. 787–798, 1999. DOI: 10.1016/S1388-2457 (98)00038-8.

    Google Scholar 

  44. J. Yan. The Attract Force Equation of Energy. American Journal of Modern Physics, vol. 3, no. 6, pp. 224–226, 2014. DOI: 10.11648/j.ajmp.20140306.13.

    Google Scholar 

  45. A. A. Abarghouei, A. Ghanizadeh, S. M. Shamsuddin. Advances of soft computing methods in edge detection. International Journal of Advances in Soft Computing and Its Applications, vol. 1, no. 2, pp. 162–203, 2009.

    Google Scholar 

  46. E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi. BGSA: Binary gravitational search algorithm. Natural Computing, vol. 9, no. 3, pp. 727–745, 2010. DOI: 10.1007/s11047-009-9175-3.

    MathSciNet  MATH  Google Scholar 

  47. S. Mirjalili, S. M. Mirjalili, A. Lewis. Let a biogeographybased optimizer train your multi-layer perceptron. Information Sciences, vol. 269, pp. 188–209, 2014. DOI: 10.1016/j.ins.2014.01.038.

    MathSciNet  Google Scholar 

  48. D. H. Wolpert, W. G. Macready. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997. DOI: 10.1109/4235.585893.

    Google Scholar 

  49. H. Higashi, T. Tanaka. Common spatio-time-frequency patterns for motor imagery-based brain machine interfaces. Computational Intelligence and Neuroscience, vol. 2013, Article number 537218, 2013. DOI: 10.1155/2013/537218.

    Google Scholar 

  50. W. He, P. F. Wei, L. P. Wang, Y. X. Zou. A novel emdbased common spatial pattern for motor imagery braincomputer interface. In Proceedings of IEEE-EMBS International Conference on Biomedical and Health Informatics, Hong Kong, China, pp. 216–219, 2012. DOI: 10.1109/BHI.2012.6211549.

    Google Scholar 

  51. H. H. Zhang, C. T. Guan, K. K. Ang, C. C. Wang, Z. Y. Chin. BCI competition IV - data set I: Learning discriminative patterns for self-paced EEG-based motor imagery detection. Frontiers in Neuroscience, vol. 6, Article number 7, 2012. DOI: 10.3389/fnins.2012.00007. DOI: 10.3389/fnins.2012.00007.

    Google Scholar 

  52. A. M. Alvarez-Meza, L. F. Velasquez-Martinez, G. Castellanos-Dominguez. Time-series discrimination using feature relevance analysis in motor imagery classification. Neurocomputing, vol. 151, pp. 122–129, 2015. DOI: 10.1016/j.neucom.2014.07.077.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad-Reza Mosavi.

Additional information

Sajjad Afrakhteh received the B. Sc. degree in electrical engineering from Shiraz University of Science and Technology, Iran in 2015, and the M. Sc. degree in digital electronic from Iran University of Science and Technology (IUST), Iran in 2017. He is currently a Ph.D. degree candidate in electronic engineering, IUST, Iran. His research interests include system and circuit design, signal processing, image processing, artificial neural networks and meta-heuristic algorithms.

Mohammad-Reza Mosavi received the B. Sc., M. Sc. and Ph. D. degrees in electronic engineering from Iran University of Science and Technology, Iran in 1997, 1998, and 2004, respectively. He is currently faculty member (full professor) of the Department of Electrical Engineering, IUST, Iran. He is the author of more than 330 scientific publications in journals and international conferences. His research interests include circuits and systems design.

Mohammad Khishe received the B. Sc. degree in maritime electronic and communication engineering from Imam Khomeini Maritime Sciences University, Iran in 2007, the M. Sc. and Ph. D. degrees in electronic engineering from Islamic Azad University, Qazvin branch and Iran University of Science and Technology, Tehran in 2012 and 2017, respectively. Since 2011, he has been a faculty member of Maritime Electrical and Electronic Engineering at Imam Khomeini Maritime Sciences University, Iran. His research interests include digital signal processing, artificial neural networks, meta-heuristic algorithms, sonar and radar signal processing, and field-programmable gate array (FPGA) design.

Ahmad Ayatollahi received the B. Sc. degree in electrical engineering from Iran University of Science and Technology, Iran in 1976, and the M. Sc. and Ph.D. degrees in instrumentation engineering and electrical engineering from University of Manchester Institute of Science and Technology (UMIST), UK in 1985 and 1989, respectively. He is currently faculty member (associate professor) of the College of Electrical Engineering, Iran University of Science and Technology, Tehran. His research interests include medical image and signal processing, design of electronic circuits, power electronics, and ultrasound.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afrakhteh, S., Mosavi, MR., Khishe, M. et al. Accurate Classification of EEG Signals Using Neural Networks Trained by Hybrid Population-physic-based Algorithm. Int. J. Autom. Comput. 17, 108–122 (2020). https://doi.org/10.1007/s11633-018-1158-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-018-1158-3

Keywords

Navigation