Skip to main content
Log in

Dual-modal Physiological Feature Fusion-based Sleep Recognition Using CFS and RF Algorithm

  • Research Article
  • Published:
International Journal of Automation and Computing Aims and scope Submit manuscript

Abstract

Research has demonstrated a significant overlap between sleep issues and other medical conditions. In this paper, we consider mild difficulty in falling asleep (MDFA). Recognition of MDFA has the potential to assist in the provision of appropriate treatment plans for both sleep issues and related medical conditions. An issue in the diagnosis of MDFA lies in subjectivity. To address this issue, a decision support tool based on dual-modal physiological feature fusion which is able to automatically identify MDFA is proposed in this study. Special attention is given to the problem of how to extract candidate features and fuse dual-modal features. Following the identification of the optimal feature set, this study considers the correlations between each feature and class and evaluates correlations between the inter-modality features. Finally, the recognition accuracy was measured using 10-fold cross validation. The experimental results for our method demonstrate improved performance. The highest recognition rate of MDFA using the optimal feature set can reach 96.22%. Based on the results of current study, the authors will, in projected future research, develop a real-time MDFA recognition system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. J. Horsley, C. R. Rouleau, S. N. Garland, C. Samuels, S. G. Aggarwal, J. A. Stone, R. Arena, T. S. Campbell. Insomnia symptoms and heart rate recovery among patients in cardiac rehabilitation. Journal of Behavioral Medicine, vol. 39, no. 4, pp. 642–651, 2016. DOI: https://doi.org/10.1007/s10865-016-9725-y.

    Article  Google Scholar 

  2. M. W. Johns. A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep, vol. 14, no. 6, pp. 540–545, 1991. DOI: https://doi.org/10.1093/sleep/14.6.540.

    Article  Google Scholar 

  3. A. J. Stunkard, M. S. Faith, K. C. Allison. Depression and obesity. Biological Psychiatry, vol. 54, no. 3, pp. 330–337, 2003. DOI: https://doi.org/10.1016/S0006-3223(03)00608-5.

    Article  Google Scholar 

  4. E. E. Tripoliti, D. I. Fotiadis, M. Argyropoulou. A supervised method to assist the diagnosis and monitor progression of Alzheimer’s disease using data from an fMRI experiment. Artificial Intelligence in Medicine, vol. 53, no. 1, pp. 35–45, 2011. DOI: https://doi.org/10.1016/j.artmed.2011.05.005.

    Article  Google Scholar 

  5. T. P. Exarchos, A. T. Tzallas, D. Baga, D. Chaloglou, D. I. Fotiadis, S. Tsouli, M. Diakou, S. Konitsiotis. Using partial decision trees to predict Parkinson’s symptoms: A new approach for diagnosis and therapy in patients suffering from Parkinson’s disease. Computers in Biology and Medicine, vol. 42, no. 2, pp. 195–204, 2012. DOI: https://doi.org/10.1016/j.compbiomed.2011.11.008.

    Article  Google Scholar 

  6. M. M. Ohayon. Epidemiology of insomnia: What we know and what we still need to learn. Sleep Medicine Reviews, vol. 6, no. 2, pp. 97–111, 2002. DOI: https://doi.org/10.1053/smrv.2002.0186.

    Article  Google Scholar 

  7. A. Ylikoski, K. Martikainen, M. Sieminski, M. Partinen. Sleeping difficulties and health-related quality of life in Parkinson’s disease. Acta Neurologica Scandinavica, vol. 135, no. 4, pp. 459–468, 2017. DOI: https://doi.org/10.1111/ane.12620.

    Article  Google Scholar 

  8. A. Bellatorre, K. Choi, D. Lewin, D. Haynie, B. Simons-Morton. Relationships between smoking and sleep problems in black and white adolescents. Sleep, vol. 40, no. 1, Article number zsw031, 2017. DOI: https://doi.org/10.1093/sleep/zsw031.

    Google Scholar 

  9. A. A. Gamaldo, J. C. Allaire, K. E. Whitfield. The relationship between reported problems falling asleep and cognition among African American elderly. Research on Aging, vol. 30, no. 6, pp. 752–767, 2008. DOI: https://doi.org/10.1177/0164027508322576.

    Article  Google Scholar 

  10. W. C. Choo, W. W. Lee, V. Venkatraman, F. S. Sheu, M. W. L. Chee. Dissociation of cortical regions modulated by both working memory load and sleep deprivation and by sleep deprivation alone. Neuroimage, vol. 25, no. 2, pp. 579–587, 2005. DOI: https://doi.org/10.1016/j.neuroimage.2004.11.029.

    Article  Google Scholar 

  11. L. Leigh, I. L. Hudson, J. E. Byles. Sleeping difficulty, disease and mortality in older women: A latent class analysis and distal survival analysis. Journal of Sleep Research, vol. 24, no. 6, pp. 648–657, 2015. DOI: https://doi.org/10.1111/jsr.12324.

    Article  Google Scholar 

  12. O. P. Almeida, H. Alfonso, B. B. Yeap, G. Hankey, L. Flicker. Complaints of difficulty to fall asleep increase the risk of depression in later life: The health in men study. Journal of Affective Disorders, vol. 134, no. 1–3, pp. 208–216, 2011. DOI: https://doi.org/10.1016/j.jad.2011.05.045.

    Article  Google Scholar 

  13. J. D. Edinger, M. H. Bonnet, R. R. Bootzin, K. Doghramji, C. M. Dorsey, C. A. Espie, A. O. Jamieson, W. V. McCall, C. M. Morin, E. J. Stepanski. Derivation of research diagnostic criteria for insomnia: Report of an American academy of sleep medicine work group. Sleep, vol. 27, no. 8, pp. 1567–1596, 2004. DOI: https://doi.org/10.1093/sleep/27.8.1567.

    Article  Google Scholar 

  14. C. M. Jung, J. M. Ronda, C. A. Czeisler, K. P. Jr. Wright. Comparison of sustained attention assessed by auditory and visual psychomotor vigilance tasks prior to and during sleep deprivation. Journal of Sleep Research, vol. 20, no. 2, pp. 348–355, 2011. DOI: https://doi.org/10.1111/j.1365-2869.2010.00877.x.

    Article  Google Scholar 

  15. S. W. Lockley, E. E. Evans, F. A. Scheer, G. C. Brainard, C. A. Czeisler, D. Aeschbach. Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. Sleep, vol. 29, no. 2, pp. 161–168, 2006. DOI: https://doi.org/10.1093/sleep/29.2.161.

    Google Scholar 

  16. B. T. Zhang, T. Lei, H. Liu, H. S. Cai. EEG-based automatic sleep staging using ontology and weighting feature analysis. Computational and Mathematical Methods in Medicine, vol. 2018, Article number 6534041, 2018. DOI: https://doi.org/10.1155/2018/6534041.

  17. S. Kinreich, I. Podlipsky, S. Jamshy, N. Intrator, T. Hendler. Neural dynamics necessary and sufficient for transition into pre-sleep induced by EEG neurofeedback. Neuroimage, vol. 97, pp. 19–28, 2014. DOI: https://doi.org/10.1016/j.neuroimage.2014.04.044.

    Article  Google Scholar 

  18. W. Dement, N. Kleitman. Cyclic variations in EEG during sleep and their relation to eye movements, body motility, and dreaming. Electroencephalography and Clinical Neurophysiology, vol. 9, no. 4, pp. 673–690, 1957. DOI: https://doi.org/10.1016/0013-4694(57)90088-3.

    Article  Google Scholar 

  19. S. F. Liang, C. E. Kuo, F. Z. Shaw, Y. H. Chen, C. H. Hsu, J. Y. Chen. Combination of expert knowledge and a genetic fuzzy inference system for automatic sleep staging. IEEE Transactions on Biomedical Engineering, vol. 63, no. 10, pp. 2108–2118, 2016. DOI: https://doi.org/10.1109/TBME.2015.2510365.

    Article  Google Scholar 

  20. O. Tsinalis, P. M. Matthews, Y. K. Guo. Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders. Annals of Biomedical Engineering, vol. 44, no. 5, pp. 1587–1597, 2016. DOI: https://doi.org/10.1007/s10439-015-1444-y.

    Article  Google Scholar 

  21. B. Sen, M. Peker, A. Cavusoglu, F. V. Celebi. A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms. Journal of Medical Systems, vol. 38, no. 3, pp. 667–687, 2014. DOI: https://doi.org/10.1007/s10916-014-0018-0.

    Article  Google Scholar 

  22. Y. L. Hsu, Y. T. Yang, J. S. Wang, C. Y. Hsu. Automatic sleep stage recurrent neural classifier using energy features of EEG signals. Neurocomputing, vol. 104, pp. 105–114, 2013. DOI: https://doi.org/10.1016/j.neucom.2012.11.003.

    Article  Google Scholar 

  23. S. F. Liang, C. E. Kuo, Y. H. Hu, Y. H. Pan, Y. H. Wang. Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models. IEEE Transactions on Instrumentation and Measurement, vol. 61, no. 6, pp. 1649–1657, 2012. DOI: https://doi.org/10.1109/TIM.2012.2187242.

    Article  Google Scholar 

  24. H. Akaike. Fitting autoregressive models for prediction. Annals of the Institute of Statistical Mathematics, vol. 21, no. 1, pp. 243–247, 1969. DOI: https://doi.org/10.1007/BF02532251.

    Article  MathSciNet  MATH  Google Scholar 

  25. I. J. Rampil. A primer for EEG signal processing in anesthesia. Anesthesiology, vol. 89, no. 4, pp. 980–1002, 1998. DOI: https://doi.org/10.1097/00000542-199810000-00023.

    Article  Google Scholar 

  26. T. Cecchin, R. Ranta, L. Koessler, O. Caspary, H. Vespignani, L. Maillard. Seizure lateralization in scalp EEG using Hjorth parameters. Clinical Neurophysiology, vol. 121, no. 3, pp. 290–300, 2010. DOI: https://doi.org/10.1016/j.clinph.2009.10.033.

    Article  Google Scholar 

  27. Z. Y. Huang, H. Y. Zhu, J. T. Zhou, X. Peng. Multiple marginal fisher analysis. IEEE Transactions on Industrial Electronics, to be published. DOI: https://doi.org/10.1109/TIE.2018.2870413.

  28. T. Lei, X. H. Jia, Y. N. Zhang, L. F. He, H. Y. Meng, A. K. Nandi. Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Transactions on Fuzzy Systems, vol. 26, no. 5, pp. 3027–3041, 2018. DOI: https://doi.org/10.1109/TFUZZ.2018.2796074.

    Article  Google Scholar 

  29. M. A. Hall. Correlation-based Feature Selection for Machine Learning, Ph. D. dissertation, The University of Waikato, New Zealand, 1999.

    Google Scholar 

  30. A. Cutler, D. R. Cutler, J. R. Stevens. Random forests. In Ensemble Machine Learning, C. Zhang, Y. Q. Ma, Eds., Boston, USA: Springer, pp. 157–176, 2004.

    Google Scholar 

  31. S. Lee. Using Weka in Matlab, [Online], Available: https://cn.mathworks.com/matlabcentral/fileexchange/5 0120-using-weka-in-matlab, January 20, 2019.

  32. L. Fraiwan, K. Lweesy, N. Khasawneh, H. Wenz, H. Dickhaus. Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier. Computer Methods and Programs in Biomedicine, vol. 108, no. 1, pp. 10–19, 2012. DOI: https://doi.org/10.1016/j.cmpb.2011.11.005.

    Article  Google Scholar 

  33. A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, H. E. Stanley. PhysioBank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals. Circulation, vol. 101, no. 23, pp. E215–E220, 2000.

  34. L. Zoubek, S. Charbonnier, S. Lesecq, A. Buguet, F. Chapotot. Feature selection for sleep/wake stages classification using data driven methods. Biomedical Signal Processing and Control, vol. 2, no. 3, pp. 171–179, 2007. DOI: https://doi.org/10.1016/j.bspc.2007.05.005.

    Article  Google Scholar 

  35. S. A. Imtiaz, Z. Jiang, E. Rodriguez-Villegas. An ultralow power system on chip for automatic sleep staging. IEEE Journal of Solid-State Circuits, vol. 52, no. 3, pp. 822–833, 2017. DOI: https://doi.org/10.1109/JSSC.2017.2647923.

    Article  Google Scholar 

  36. M. Diykh, Y. Li. Complex networks approach for EEG signal sleep stages classification. Expert Systems with Applications, vol. 63, pp. 241–248, 2016. DOI: https://doi.org/10.1016/j.eswa.2016.07.004.

    Article  Google Scholar 

  37. J. A. Hobson. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects: A. Rechtschaffen and A. Kales (Editors). Electroencephalography and Clinical Neurophysiology, vol. 26, no. 6, Article number 644, 1969.

    Article  Google Scholar 

  38. C. Iber, S. Ancoli-Israel, A. L. Jr. Chesson, S. F. Quan. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, Westchester, USA: American Academy of Sleep Medicine, 2007.

    Google Scholar 

  39. I. Kononenko. Estimating attributes: Analysis and extesions of RELIEF. In Proceedings of European Conference on Machine Learning on Machine Learning, Springer, Catania, Italy, pp. 171–182, 1994.

    Google Scholar 

  40. J. Tang, S. Alelyani, H. Liu. Feature selection for classification: A review. Data Classification: Algorithms and Applications, vol. 98, no. 7, pp. 313–334, 2014.

  41. M. Schwartz, M. Park, J. H. Phan, M. D. Wang. Integration of multimodal RNA-seq data for prediction of kidney cancer survival. In Proceedings of IEEE International Conference on Bioinformatics and Biomedicine, Washington, USA, pp. 1591–1595, 2015. DOI: https://doi.org/10.1109/BIBM.2015.7359913.

    Google Scholar 

  42. M. Goudjil, M. Koudil, M. Bedda, N. Ghoggali. A novel active learning method using SVM for text classification. International Journal of Automation and Computing, vol. 15, no. 3, pp. 290–298, 2018. DOI: https://doi.org/10.1007/s11633-015-0912-z.

    Article  Google Scholar 

  43. C. L. Zhang, Y. P. Xu, Z. J. Xu, J. He, J. Wang, J. H. Adu. A fuzzy neural network based dynamic data allocation model on heterogeneous multi-GPUs for large-scale computations. International Journal of Automation and Computing, vol. 15, no. 2, pp. 181–193, 2018. DOI: https://doi.org/10.1007/s11633-018-1120-4.

    Article  Google Scholar 

  44. M. L. Green, P. D. Karp. A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinformatics, vol. 5, Article number 76, 2004. DOI: https://doi.org/10.1186/1471-2105-5-76.

  45. A. A. B. Subramanian, S. Pramala, B. Rajalakshmi, R. Rajaram. Improving decision tree performance by exception handling. International Journal of Automation and Computing, vol. 7, no. 3, pp. 372–380, 2010. DOI: https://doi.org/10.1007/s11633-010-0517-5.

    Article  Google Scholar 

  46. X. W. Zhang, B. Hu, X. Ma, L. X. Xu. Resting-state whole-brain functional connectivity networks for MCI classification using L2-regularized logistic regression. IEEE Transactions on Nanobioscience, vol. 14, no. 2, pp. 237–247, 2015. DOI: https://doi.org/10.1109/TNB.2015.2403274.

    Article  Google Scholar 

  47. H. Y. Zhu, R. Vial, S. J. Lu, X. Peng, H. Z. Fu, Y. H. Tian, X. B. Cao. Yotube: Searching action proposal via recurrent and static regression networks. IEEE Transactions on Image Processing, vol. 27, no. 6, pp. 2609–2622, 2018. DOI: https://doi.org/10.1109/TIP.2018.2806279.

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Shahin, B. Ahmed, S. T. B. Hamida, F. L. Mulaffer, M. Glos, T. Penzel. Deep learning and insomnia: Assisting clinicians with their diagnosis. IEEE Journal of Biomedical and Health Informatics, vol. 21, no. 6, pp. 1546–1553, 2017. DOI: https://doi.org/10.1109/JBHI.2017.2650199.

    Article  Google Scholar 

  49. M. Shahin, L. Mulaffer, B. Ahmed. Two Stages Approach for Automatic Detection of Sleep Insomnia, [Online], Available: https://www.researchgate.net/publication/324330830_Two_Stages_Approach_for_Automatic_Detection_of_Sleep_Insomnia, 2018.

  50. B. Hu, D. Majoe, M. Ratcliffe, Y. B. Qi, Q. L. Zhao, H. Peng, D. P. Fan, F. Zheng, M. Jackson, P. Moore. EEG-based cognitive interfaces for ubiquitous applications: Developments and challenges. IEEE Intelligent Systems, vol. 26, no. 5, pp. 46–53, 2011. DOI: https://doi.org/10.1109/MIS.2011.58.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by National Natural Science Foundation of China (Nos. 61761027 and 61461025), the Yong Scholar Fund of Lanzhou Jiaotong University (No. 2016004) and the Teaching Reform Project of Lanzhou Jiaotong University (No. JGY201841).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Tao Zhang.

Additional information

Recommended by Associate Editor Hong Qiao

Bing-Tao Zhang received the M. Sc. degree in computer software and theory from Lanzhou University of Technology, China in 2011. He is currently a Ph. D. degree candidate in computer application at Lanzhou University. Since 2014, he has been a lecturer with the School of Electronic and Information Engineering, Lanzhou Jiaotong University, China.

His research interests include the intersection between computer science and sleep staging, data mining, ontology-based knowledge base modeling of multimodal physiological signals.

Xiao-Peng Wang received the Ph. D. degree in signal and information processing from Northwestern Polytechnical University, China in 2005. He has published about 80 papers in peer reviewed journals and conferences.

His research interests include intelligent information processing and computer application.

Yu Shen received the Ph. D. degree in intelligent transportation and information system engineering from Lanzhou Jiaotong University, China in 2017. She has published about 40 papers in peer reviewed journals and conferences.

Her research interests include digital image processing and communication and information system engineering.

Tao Lei received the Ph. D. degree in information and communication engineering from Northwestern Polytechnical University, China in 2011. He has published about 70 papers in peer reviewed journals and conferences including Image and Vision Computing, IET Image Processing, Science China Information Sciences, Multimedia Tools and Applications, etc.

His research interests include pattern recognition and artificial intelligence.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, BT., Wang, XP., Shen, Y. et al. Dual-modal Physiological Feature Fusion-based Sleep Recognition Using CFS and RF Algorithm. Int. J. Autom. Comput. 16, 286–296 (2019). https://doi.org/10.1007/s11633-019-1171-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-019-1171-1

Keywords

Navigation