Skip to main content
Log in

Novel Non-monotonic Lyapunov-Krasovskii Based Stability Analysis and Stabilization of Discrete State-delay System

  • Research Article
  • Published:
International Journal of Automation and Computing Aims and scope Submit manuscript

Abstract

This paper proposes a novel less-conservative non-monotonic Lyapunov-Krasovskii stability approach for stability analysis of discrete time-delay systems. In this method, monotonically decreasing requirements of the Lyapunov-Krasovskii method are replaced with non-monotonic ones. The Lyapunov-Krasovskii functional is allowed to increase in some steps, but the overall trend should be decreasing. The model of practical systems used for stability analysis usually contain uncertainty. Therefore, firstly a non-monotonic stability condition is derived for certain discrete time-delay systems, then robust non-monotonic stability conditions are proposed for uncertain systems. Finally, a novel stabilization algorithm is derived based on the introduced non-monotonic stability condition. The Lyapunov-Krasovskii functional and the controller are obtained by solving a set of linear matrix inequalities (LMI) or iterative LMI based nonlinear minimization. The proposed theorems are first evaluated by some numerical examples, and then by simulation and implementation on the pH neutralizing process plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Shi, H. Y. Su, J. Chu. On stability and stabilisation for uncertain stochastic systems with time-delay and actuat- or saturation. International Journal of Systems Science, vol. 41, no. 5, pp. 501–509, 2010. DOI: 10.1080/00207720903072282.

    Article  MathSciNet  Google Scholar 

  2. A. G. Wu, G. R. Duan. On delay-independent stability criteria for linear time-delay systems. International Journal of Automation and Computing, vol. 4, no. 1, pp. 95–100, 2007. DOI: 10.1007/s11633-007-0095-3.

    Article  Google Scholar 

  3. C. K. Zhang, Y. He, L. Jiang, M. Wu, H. B. Zeng. Summation inequalities to bounded real lemmas of discrete-time systems with time-varying delay. IEEE Transactions on Automatic Control, vol. 62, no. 5, pp. 2582–2588, 2017. DOI: 10.1109/TAC.2016.2600024.

    Article  MathSciNet  Google Scholar 

  4. Y. He, M. Wu, G. P. Liu, J. H. She. Output feedback stabilization for a discrete-time system with a time-varying delay. IEEE Transactions on Automatic Control, vol. 53, no. 10, pp. 2372–2377, 2008. DOI: 10.1109/TAC.2008. 2007522.

    Article  MathSciNet  Google Scholar 

  5. H. Y. Shao, Q. L. Han. New stability criteria for linear discrete-time systems with interval-like time-varying delays. IEEE Transactions on Automatic Control, vol. 56, no. 3, pp. 619–625, 2011. DOI: 10.1109/TAC.2010.2095591.

    Article  MathSciNet  Google Scholar 

  6. P. T. Nam, P. N. Pathirana, H. Trinh. Discrete Wirtingerbased inequality and its application. Journal of the Franklin Institute, vol. 352, no. 5, pp. 1893–1905, 2015. DOI: 10.1016/j.jfranklin.2015.02.004.

    Article  MathSciNet  Google Scholar 

  7. A. Seuret, F. Gouaisbaut, E. Fridman. Stability of discrete-time systems with time-varying delays via a novel summation inequality. IEEE Transactions on Automatic Control, vol. 60, no. 10, pp. 2740–2745, 2015. DOI: 10.1109/TAC.2015.2398885.

    Article  MathSciNet  Google Scholar 

  8. C. K. Zhang, Y. He, L. Jiang, M. Wu. An improved summation inequality to discrete-time systems with time-varying delay. Automatica, vol. 74, pp. 10–15, 2016. DOI: 10.1016/j.automatica.2016.07.040.

    Article  MathSciNet  Google Scholar 

  9. X. M. Zhang, Q. L. Han. Abel lemma-based finite-sum inequality and its application to stability analysis for linear discrete time-delay systems. Automatica, vol. 57, pp. 199–202, 2015. DOI: 10.1016/j.automatica.2015.04. 019.

    Article  MathSciNet  Google Scholar 

  10. D. Aeyels, J. Peuteman. A new asymptotic stability criterion for nonlinear time-variant differential equations. IEEE Transactions on Automatic Control, vol. 43, no. 7, pp. 968–971, 1998. DOI: 10.1109/9.701102.

    Article  MathSciNet  Google Scholar 

  11. A. Kruszewski, R. Wang, T. M. Guerra. Nonquadratic stabilization conditions for a class of uncertain nonlinear discrete time TS fuzzy models: A new approach. IEEE Transactions on Automatic Control, vol. 53, no. 2, pp. 606–611, 2008. DOI: 10.1109/TAC.2007.914278.

    Article  MathSciNet  Google Scholar 

  12. A. A. Ahmadi, P. A. Parrilo. Non-monotonic Lyapunov functions for stability of discrete time nonlinear and switched systems. In Proceedings of the 47th IEEE Conference on Decision and Control, IEEE. Cancun, Mexico, pp. 614–621, 2008. DOI: 10.1109/CDC.2008.4739402.

    Google Scholar 

  13. S. F. Derakhshan, A. Fatehi, M. G. Sharabiany. Non-monotonic observer-based fuzzy controller designs for discrete time T-S fuzzy systems via LMI. IEEE Transactions on Cybernetics, vol. 44, no. 12, pp. 2557–2567, 2014. DOI: 10.1109/TCYB.2014.2310591.

    Article  Google Scholar 

  14. Y. Xie, J. W. Wen, L. Peng, H. Wang. Robust H control of average dwell time switching systems via non-monotonic Lyapunov function approach. In Proceedings of the 3rd IEEE International Conference on Control Science and Systems Engineering, IEEE. Beijing, China, pp. 16–21, 2017. DOI: 10.1109/CCSSE.2017.8087886.

    Google Scholar 

  15. Y. Xie, J. W. Wen, S. K. Nguang, L. Peng. Stability, l2-gain, and robust H control for switched systems via N-step-ahead Lyapunov function approach. IEEE Access, vol. 5, pp. 26400–26408, 2017. DOI: 10.1109/ACCESS.2017. 2771455.

    Article  Google Scholar 

  16. Y. J. Chen, M. Tanaka, K. Inoue, H. Ohtake, K. Tanaka, T. M. Guerra, A. Kruszewski, H. O. Wang. A nonmonotonically decreasing relaxation approach of Lyapunov functions to guaranteed cost control for discrete fuzzy systems. IET Control Theory & Applications, vol. 8, no. 16, pp. 1716–1722, 2014. DOI: 10.1049/iet-cta.2013.1132.

    Article  MathSciNet  Google Scholar 

  17. A. Nasiri, S. K. Nguang, A. Swain, D. J. Almakhles. Robust output feedback controller design of discrete-time Takagi-Sugeno fuzzy systems: A non-monotonic Lyapunov approach. IET Control Theory & Applications, vol. 10, no. 5, pp. 545–553, 2016. DOI: 10.1049/iet-cta.2015.0750.

    Article  MathSciNet  Google Scholar 

  18. A. Nasiri, S. K. Nguang, A. Swain, D. J. Almakhles. Reducing conservatism in an H robust state-feedback control design of T-S fuzzy systems: A nonmonotonic approach. IEEE Transactions on Fuzzy Systems, vol. 26, no. 1, pp. 386–390, 2018. DOI: 10.1109/TFUZZ.2017.2649580.

    Article  Google Scholar 

  19. J. W. Wen, S. K. Nguang, P. Shi, A. Nasiri. Robust H control of discrete-time nonhomogenous markovian jump systems via multistep Lyapunov function approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 3, pp. 1439–1450, 2017. DOI: 10.1109/TSMC.2016. 2617621.

    Article  Google Scholar 

  20. J. J. Hui, H. X. Zhang, X. Y. Kong, X. Zhou. On improved delay-dependent robust stability criteria for uncertain systems with interval time-varying delay. International Journal of Automation and Computing, vol. 12, no. 1, pp. 102–108, 2015. DOI: 10.1007/s11633-014-0822-5.

    Article  Google Scholar 

  21. S. Y. Xu, J. Lam, Y. Zou. Improved conditions for delaydependent robust stability and stabilization of uncertain discrete time-delay systems. Asian Journal of Control, vol. 7, no. 3, pp. 344–348, 2005. DOI: 10.1111/j.1934-6093. 2005.tb00244.x.

    Article  Google Scholar 

  22. V. K. R. Kandanvli, H. Kar. Robust stability of discretetime state-delayed systems employing generalized overflow nonlinearities. Nonlinear Analysis: Theory, Methods & Applications, vol. 69, no. 9, pp. 2780–2787, 2008. DOI: 10.1016/j.na.2007.08.050.

    Article  MathSciNet  Google Scholar 

  23. B. Shafai, H. Sadaka, R. Ghadami. Robust stability and constrained stabilization of discrete-time delay systems. IFAC Proceedings Volumes, vol. 45, no. 14, pp. 31–36, 2012. DOI: 10.3182/20120622-3-US-4021.00058.

    Article  Google Scholar 

  24. K. Ramakrishnan, G. Ray. Robust stability criteria for a class of uncertain discrete-time systems with time-varying delay. Applied Mathematical Modelling, vol. 37, no. 3, pp. 1468–1479, 2013. DOI: 10.1016/j.apm.2012.03.045.

    Article  MathSciNet  Google Scholar 

  25. L. Li, F. C. Liao. Robust preview control for a class of uncertain discrete-time systems with time-varying delay. ISA Transactions, vol. 73, pp. 11–21, 2018. DOI: 10.1016/j.isatra. 2018.01.005.

    Article  Google Scholar 

  26. C. C. Sun. Stabilization for a class of discrete-time switched large-scale systems with parameter uncertainties. International Journal of Automation and Computing, vol. 16, no. 4, pp. 543–552, 2019. DOI: 10.1007/s11633-016-0966-6.

    Article  Google Scholar 

  27. P. P. Khargonekar, I. R. Petersen, K. Zhou. Robust stabilization of uncertain linear systems: Quadratic stabilizability and H infinity/control theory. IEEE Transactions on Automatic Control, vol. 35, no. 3, pp. 356–361, 1990. DOI: 10.1109/9.50357.

    Article  MathSciNet  Google Scholar 

  28. M. Wu, Y. He, J. H. She. Stability Analysis and Robust Control of Time-delay Systems, Berlin, Germany: Springer, 2010. DOI: 10.1007/978-3-642-03037-6.

    Book  Google Scholar 

  29. J. Lofberg. YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of 2004 IEEE International Conference on Robotics and Automation, New Orleans, USA, pp. 284–289, 2004. DOI: 10.1109/CACSD.2004. 1393890.

    Google Scholar 

  30. S. Y. Xu, J. Lam, B. Y. Zhang, Y. Zou. A new result on the delay-dependent stability of discrete systems with timevarying delays. International Journal of Robust and Nonlinear Control, vol. 24, no. 16, pp. 2512–2521, 2014. DOI: 10.1002/rnc.3006.

    Article  MathSciNet  Google Scholar 

  31. J. Yoneyama, T. Tsuchiya. New delay-dependent conditions on robust stability and stabilisation for discrete-time systems with time-delay. International Journal of Systems Science, vol. 39, no. 10, pp. 1033–1040, 2008. DOI: 10.1080/00207720802088116.

    Article  MathSciNet  Google Scholar 

  32. C. Peng. Improved delay-dependent stabilisation criteria for discrete systems with a new finite sum inequality. IET Control Theory & Applications, vol. 6, no. 3, pp. 448–453, 2012. DOI: 10.1049/iet-cta.2011.0109.

    Article  MathSciNet  Google Scholar 

  33. O. M. Kwon, M. J. Park, J. H. Park, S. M. Lee, E. J. Cha. Improved robust stability criteria for uncertain discretetime systems with interval time-varying delays via new zero equalities. IET Control Theory & Applications, vol. 6, no. 16, pp. 2567–2575, 2012. DOI: 10.1049/iet-cta.2012. 0257.

    Article  MathSciNet  Google Scholar 

  34. G. Baruah, S. Majhi, C. Mahanta. Design of FOPI controller for time delay systems and its experimental validation. International Journal of Automation and Computing, vol. 16, no. 3, pp. 310–328, 2019. DOI: 10.1007/s11633-018-1165-4.

    Article  Google Scholar 

  35. M. Sadeghassadi, A. Fatehi, A. K. Sedigh, S. Hosseini. On the structural optimization of a neural network model predictive controller. Industrial & Engineering Chemistry Research, vol. 52, no. 1, pp. 394–407, 2012. DOI: 10.1021/ie201815r.

    Google Scholar 

  36. D. Shaghaghi, A. Fatehi, A. Khaki-Sedigh. Multi-linear model set design based on the nonlinearity measure and Hgap metric. ISA Transactions, vol. 68, pp. 1–13, 2017. DOI: 10.1016/j.isatra.2017.01.021.

    Article  Google Scholar 

  37. K. J. Åström, T. Hägglund. PID Controllers: Theory, Design, and Tuning, 2nd ed., Research Triangle Park, North Carolina, USA: Instrument Society of America, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Fatehi.

Additional information

Recommended by Associate Editor Jie zhang

Younes Solgi received the B. Sc. and M. Sc. degrees in electrical engineering from the Bu Ali Sina University, Hamedan, Iran in 2012 and 2014 recpectively. He is curently a Ph. D. degree candidate at K.N. Toosi University of Technology (KNTU), Tehran, Iran.

His research interests include stability analysis, process control systems, robust control, and intelligent systems.

Alireza Fatehi received the B. Sc. degree from the Isfahan University of Technology, Isfahan, Iran in 1990, the M. Sc. degree from Tehran University, Iran in 1995, and the Ph. D. degree from Tohoku University, Japan in 2001, all in electrical engineering. He is an associate professor of electrical engineering with the K.N. Toosi University of Technology (KNTU), Iran. He is the Director of Advanced Process Automation and Control Research Group and a member of the Industrial Control Center of Excellence, KNTU. From 2013 to 2015, he was a visiting profess- or with the Department of Chemical and Materials Engineering, University of Alberta, Canada.

His research interests include industrial control systems, process control systems, intelligent systems, multiple model controller, nonlinear predictive controller, nonlinear identification, fault detection, and soft sensor.

Ala Shariati received the B. Sc. degree in control engineering from Tehran University, Iran in 1998, and the M. Sc. and Ph. D. degrees in control engineering from K.N. Toosi University of Technology, Iran in 2003 and 2012, respectively. She was a Postdoctoral Fellow at University of Alberta from March to August 2014. She is currently a research assistant in APAC research group of K.N. Toosi University of Technology, Iran.

Her research interests include time-delay systems, robust control, multi-agent systems and teleoperation systems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solgi, Y., Fatehi, A. & Shariati, A. Novel Non-monotonic Lyapunov-Krasovskii Based Stability Analysis and Stabilization of Discrete State-delay System. Int. J. Autom. Comput. 17, 713–732 (2020). https://doi.org/10.1007/s11633-020-1222-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-020-1222-7

Keywords

Navigation