Skip to main content

Advertisement

Log in

A Review on Cooperative Robotic Arms with Mobile or Drones Bases

  • Review
  • Published:
International Journal of Automation and Computing Aims and scope Submit manuscript

Abstract

This review paper focuses on cooperative robotic arms with mobile or drone bases performing cooperative tasks. This is because cooperative robots are often used as risk-reduction tools to human life. For example, they are used to explore dangerous places such as minefields and disarm explosives. Drones can be used to perform tasks such as aerial photography, military and defense missions, agricultural surveys, etc. The bases of the cooperative robotic arms can be stationary, mobile (ground), or drones. Cooperative manipulators allow faster performance of assigned tasks because of the available “extra hand”. Furthermore, a mobile base increases the reachable ground workspace of cooperative manipulators while a drone base drastically increases this workspace to include the aerial space. The papers in this review are chosen to extensively cover a wide variety of cooperative manipulation tasks and industries that use them. In cooperative manipulation, avoiding self-collision is one of the most important tasks to be performed. In addition, path planning and formation control can be challenging because of the increased number of components to be coordinated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. D. Theobold, J. Ornstein, J. G. Nichol, S. E. Kullberg. Mobile Robot Platform, U.S. Patent 7348747, March 2008.

  2. F. Huber, K. Kondak, K. Krieger, D. Sommer, M. Schwarzbach, M. Laiacker, I. Kossyk, S. Parusel, S. Haddadin, A. Albu-Schäffer. First analysis and experiments in aerial manipulation using fully actuated redundant robot arm. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Tokyo, Japan, pp. 3452–3457, 2013. DOI: https://doi.org/10.1109/IROS.2013.6696848.

    Google Scholar 

  3. S. Kim, S. Choi, H. J. Kim. Aerial manipulation using a quadrotor with a two dof robotic arm. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Tokyo, Japan, pp. 4990–4995, 2013. DOI: https://doi.org/10.1109/IROS.2013.6697077.

    Google Scholar 

  4. K. D. Atherton. This drone has arms, [Online], Available: https://www.popsci.com/this-is-drone-with-arms/, September 17, 2019.

  5. R. S. Jamisola Jr, P. S. Kormushev, R. G. Roberts, D. G. Caldwell. Task-space modular dynamics for dual-arms expressed through a relative Jacobian. Journal of Intelligent & Robotic Systems, vol. 83, no. 2, pp. 205–218, 2016.

    Article  Google Scholar 

  6. R. S. Jamisola, P. Kormushev, D. G. Caldwell, F. Ibikunle. Modular relative jacobian for dual-arms and the wrench transformation matrix. In Proceedings of the 7th IEEE International Conference on Cybernetics and Intelligent Systems and IEEE Conference on Robotics, Automation and Mechatronics, IEEE, Siem Reap, Cambodia, pp. 181–186, 2015. DOI: https://doi.org/10.1109/ICCIS.2015.7274617.

    Google Scholar 

  7. A. Akbarimajd, M. N. Ahmadabadi. Manipulation by juggling of planar polygonal objects using two 3-DOF manipulators. In Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, IEEE, Zurich, Switzerland, 2007. DOI: https://doi.org/10.1109/AIM.2007.4412559.

    Google Scholar 

  8. R. Shah, P. J. Narayanan. Trajectory based video object manipulation. In Proceedings of IEEE International Conference on Multimedia and Expo, IEEE, Barcelona, Spain, 2011. DOI: https://doi.org/10.1109/ICME.2011.6012069.

    Google Scholar 

  9. J. Dai, J. Cheng, M. Song. Cooperative task assignment for heterogeneous multi-UAVs based on differential evolution algorithm. In Proceedings of IEEE International Conference on Intelligent Computing and Intelligent Systems, IEEE, Shanghai, China, pp. 163–167, 2009. DOI: https://doi.org/10.1109/ICICISYS.2009.5358296.

    Google Scholar 

  10. Y. Yang, C. Wang. Analysis of business English information mining method based on task cooperative learning model. In Proceedings of International Conference on Robots & Intelligent System, IEEE, Haikou, China, pp. 344–348, 2019. DOI: https://doi.org/10.1109/ICRIS.2019.00093.

    Google Scholar 

  11. F. Pan, Z. Zhang, R. Zhang, T. Long. Research of UAVs cooperative tasks assignment model. In Proceedings of the 29th Chinese Control Conference, IEEE, Beijing, China, pp. 1757–1762, 2010.

    Google Scholar 

  12. C. Rodríguez, A. Rojas-de-Silva, R. Suárez. Dual-arm framework for cooperative applications. In Proceedings of the 21st IEEE International Conference on Emerging Technologies and Factory Automation, IEEE, Berlin, Germany, 2016. DOI: https://doi.org/10.1109/ETFA.2016.7733704.

    Google Scholar 

  13. O. Robotics. About ROS, [Online], Available: https://www.ros.org/about-ros/, February 15, 2021.

  14. Y. A. Zhang, Y. L. Mi, M. Zhu, F. L. Lu. Adaptive sliding mode control for two-link flexible manipulators with H/sub/spl infin//tracking performance. In Proceedings of International Conference on Machine Learning and Cybernetics, IEEE, Guangzhou, China, pp. 702–707, 2005. DOI: https://doi.org/10.1109/ICMLC.2005.1527035.

    Google Scholar 

  15. A. A. Awelewa, K. C. Mbanisi, S. O. Majekodunmi, I. A. Odigwe, A. F. Agbetuyi, I. Samuel. Development of a prototype robot manipulator for industrial pick-and-place operations. International Journal of Mechanical & Mechatronics Engineering, vol. 13, no. 5, pp. 20–27, 2013.

    Google Scholar 

  16. K. M. Myint, Z. M. M. Htun, H. M. Tun. Position control method for pick and place robot arm for object sorting system. International Journal of Scientific & Technology Research, vol. 5, no. 6, pp. 57–61, 2016.

    Google Scholar 

  17. M. Homayounzade, A. Khademhosseini. Disturbance observer-based trajectory following control of robot manipulators. International Journal of Control, Automation and Systems, vol.17, no. 1, pp. 203–211, 2019. DOI: https://doi.org/10.1007/s12555-017-0544-x.

    Article  Google Scholar 

  18. P. Song, M. Yashima, V. Kumar. Dynamic simulation for grasping and whole arm manipulation. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, San Francisco, USA, pp. 1082–1087, 2000. DOI: https://doi.org/10.1109/ROBOT.2000.844743.

    Google Scholar 

  19. Y. I. C. Robot. YuMi® Creating an automated future together, [Online], Available: https://pdf.directindustry.com/pdf/abb-robotics/yumi-creating-automated-future-together/30265-714485.html, April 01, 2020.

  20. C. Park, K. Park. Design and kinematics analysis of dual arm robot manipulator for precision assembly. In Proceedings of the 6th IEEE International Conference on Industrial Informatics, IEEE, Daejeon, Korea, pp. 430–435, 2008. DOI: https://doi.org/10.1109/INDIN.2008.4618138.

    Google Scholar 

  21. A. Stroupe, T. Huntsberger, A. Okon, H. Aghazarian, M. Robinson. Behavior-based multi-robot collaboration for autonomous construction tasks. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Edmonton, Canada, pp. 1495–1500, 2005. DOI: https://doi.org/10.1109/IROS.2005.1545269.

    Google Scholar 

  22. J. Lee, P. H. Chang, R. S. Jamisola. Relative impedance control for dual-arm robots performing asymmetric bimanual tasks. IEEE Transactions on Industrial Electronics, vol.61, no. 7, pp.3786–3796, 2014. DOI: https://doi.org/10.1109/TIE.2013.2266079.

    Article  Google Scholar 

  23. P. Andry, P. Gaussier, S. Moga, J. P. Banquet, J. Nadel. Learning and communication via imitation: An autonomous robot perspective. IEEE Transactions on Systems, Man, and Cybernetics — Part A: Systems and Humans, vol.31, no.5, pp.431–442, 2001. DOI: https://doi.org/10.1109/3468.952717.

    Article  Google Scholar 

  24. K. Manke. Meet Blue, the low-cost, human-friendly robot designed for AI, [Online], Available: https://news.berkeley.edu/2019/04/09/meet-blue-the-low-cost-human-friendly-robot-designed-for-ai/, February 11, 2021.

  25. R. Robotics. Your Guide to the World of Robotics, [Online], Available: https://robots.ieee.org/robots/baxter/, February 11, 2021.

  26. DLR. Rollin’ Justin, [Online], Available: https://robots.ieee.org/robots/justin/, June 18, 2020.

  27. D. I. Park, C. Park, H. Do, T. Choi, J. Kyung. Design and analysis of dual arm robot using dynamic simulation. In Proceedings of the 10th International Conference on Ubiquitous Robots and Ambient Intelligence, IEEE, Jeju, Korea, pp. 681–682, 2013. DOI: https://doi.org/10.1109/URAI.2013.6677452.

    Google Scholar 

  28. C. Park, K. Park. Design and kinematics analysis of dual arm robot manipulator for precision assembly. In Proceedings of the 6th IEEE International Conference on Industrial Informatics, IEEE, Daejeon, Korea, pp. 430–435, 2008. DOI: https://doi.org/10.1109/INDIN.2008.4618138.

    Google Scholar 

  29. D. I. Park, C. Park, H. Do, T. Choi, J. Kyung. Development of dual arm robot platform for automatic assembly. In Proceedings of the 14th International Conference on Control, Automation and Systems, IEEE, Gyeonggi-do, Korea, pp. 319–321, 2014. DOI: https://doi.org/10.1109/ICCAS.2014.6988013.

    Google Scholar 

  30. D. I. Park, H. Kim, C. Park, D. Kim. Design and analysis of the dual arm manipulator for rescue robot. In Proceedings of IEEE International Conference on Advanced Intelligent Mechatronics, IEEE, Munich, Germany, pp. 608–612, 2017. DOI: https://doi.org/10.1109/AIM.2017.8014084.

    Google Scholar 

  31. A. Freddi, S. Longhi, A. Monteriù, D. Ortenzi. A kinematic joint fault tolerant control based on relative jacobian method for dual arm manipulation systems. In Proceedings of the 3rd Conference on Control and Fault-Tolerant Systems, IEEE, Barcelona, Spain, pp. 39–44, 2016. DOI: https://doi.org/10.1109/SYSTOL.2016.7739726.

    Google Scholar 

  32. S. Erhart, D. Sieber, S. Hirche. An impedance-based control architecture for multi-robot cooperative dual-arm mobile manipulation. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Tokyo, Japan, pp. 315–322, 2013. DOI: https://doi.org/10.1109/IROS.2013.6696370.

    Google Scholar 

  33. P. Hebert, N. Hudson, J. Ma, J. W. Burdick. Dual arm estimation for coordinated bimanual manipulation. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, pp. 120–125, 2013. DOI: https://doi.org/10.1109/ICRA.2013.6630565.

    Google Scholar 

  34. S. Hayati, K. Tso, T. Lee. Dual arm coordination and control. Robotics and Autonomous Systems, vol.5, no.4, pp. 333–344, 1989. DOI: https://doi.org/10.1016/0921-8890(89)90018-3.

    Article  Google Scholar 

  35. H. A. Park, C. S. G. Lee. Dual-arm coordinated-motion task specification and performance evaluation. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Daejeon, Korea, pp. 929–936, 2016. DOI: https://doi.org/10.1109/IROS.2016.7759161.

    Google Scholar 

  36. R. G. Bonitz, T. C. Hsia. Calibrating a multi-manipulator robotic system. IEEE Robotics & Automation Magazine, vol.4, no. 1, pp. 18–22, 1997. DOI: https://doi.org/10.1109/100.580975.

    Article  Google Scholar 

  37. T. Tarn, A. Bejczy, X. Yun. Design of dynamic control of two cooperating robot arms: Closed chain formulation. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Raleigh, USA, pp. 7–13, 1987. DOI: https://doi.org/10.1109/ROBOT.1987.1088028.

    Google Scholar 

  38. S. J. Tricamo, F. L. Swern. Control of multiple robotic arms engaged in cooperative manipulation and assembly operations. In Proceedings of International Conference on Computer Integrated Manufacturing, IEEE, Troy, USA, pp. 282–287, 1988. DOI: https://doi.org/10.1109/CIM.1988.5420.

    Google Scholar 

  39. A. Yanagita, J. M. Tao, T. L. Chang, H. C. Wong, H. D. McGee, C. K. Tsai, S. K. Cheng, S. E. Nickel, H. Akeel. Robot Multi-Arm Control System, U.S. Patent 7860609, December 2010.

  40. O. Khatib, K. Yokoi, K. Chang, D. Ruspini, R. Holmberg, A. Casal, A. Baader. Force strategies for cooperative tasks in multiple mobile manipulation systems. In Proceedings of the 7th International Symposium on Robotics Research, Springer, London, UK, pp. 333–342, 1996. DOI: https://doi.org/10.1007/978-l-4471-1021-7_37.

    Google Scholar 

  41. Y. Koga, J. L. Latombe. On multi-arm manipulation planning. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, San Diego, USA, pp. 945–952, 1994. DOI: https://doi.org/10.1109/ROBOT.1994.351231.

    Google Scholar 

  42. Y. Cheung, J. S. Chung. Cooperative control of a multi-arm system using semi-autonomous telemanipulation and adaptive impedance. In Proceedings of International Conference on Advanced Robotics, IEEE, Munich, Germany, 2009.

    Google Scholar 

  43. B. Hichri, J. C. Fauroux, L. Adouane, I. Doroftei, Y. Mezouar. Design of cooperative mobile robots for co-manipulation and transportation tasks. Robotics and Computer-Integrated Manufacturing, vol.57, pp.412–421, 2019. DOI: https://doi.org/10.1016/j.rcim.2019.01.002.

    Article  Google Scholar 

  44. S. Sirouspour. Robust control design for cooperative tele-operation. In Proceedings of the Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Barcelona, Spain, pp. 1133–1138, 2005. DOI: https://doi.org/10.1109/ROBOT.2005.1570268.

    Google Scholar 

  45. F. Caccavale, L. Villani. Impedance control for multi-arm manipulation. In Proceedings of the 39th IEEE Conference on Decision and Control, IEEE, Sydney, Australia, pp. 3465–3470, 2000. DOI: https://doi.org/10.1109/CDC.2000.912240.

    Google Scholar 

  46. N. Bezzo, B. Griffin, P. Cruz, J. Donahue, R. Fierro, J. Wood. A cooperative heterogeneous mobile wireless mechatronic system. IEEE/ASME Transactions on Mechatronics, vol.19, no. 1, pp. 20–31, 2014. DOI: https://doi.org/10.1109/TMECH.2012.2218254.

    Article  Google Scholar 

  47. O. Khatib, K. Yokoi, K. Chang, D. Ruspini, R. Holmberg, A. Casal. Coordination and decentralized cooperation of multiple mobile manipulators. Journal of Robotic Systems, vol. 13, no. 11, pp. 755–764, 1996.

    Article  Google Scholar 

  48. N. Shiroma, Y. H. Chiu, Z. Min, I. Kawabuchi, F. Matsuno. Development and control of a high maneuverability wheeled robot with variable-structure functionality. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Beijing, China, pp. 4000–4005, 2006. DOI: https://doi.org/10.1109/IROS.2006.281839.

    Google Scholar 

  49. J. Gonzalez-Gomez, J. G. Victores, A. Valero-Gomez, M. Abderrahim. Motion control of differential wheeled robots with joint limit constraints. In Proceedings of IEEE International Conference on Robotics and Biomimetics, IEEE, Karon Beach, Thailand, pp. 596–601, 2011. DOI: https://doi.org/10.1109/ROBIO.2011.6181351.

    Google Scholar 

  50. R. Siegwart, P. Lamon, T. Estier, M. Lauria, R. Piguet. Innovative design for wheeled locomotion in rough terrain. Robotics and Autonomous systems, vol.40, no. 2–3, pp. 151–162, 2002. DOI: https://doi.org/10.1016/S0921-8890(02)00240-3.

    Article  Google Scholar 

  51. J. X. Xu, Z. Q. Guo, T. H. Lee. Design and implementation of integral sliding-mode control on an underactuated two-wheeled mobile robot. IEEE Transactions on industrial electronics, vol.61, no. 7, pp. 3671–3681, 2014. DOI: https://doi.org/10.1109/TIE.2013.2282594.

    Article  Google Scholar 

  52. B. X. Mu, J. C. Chen, Y. Shi, Y. F. Chang. Design and implementation of nonuniform sampling cooperative control on a group of two-wheeled mobile robots. IEEE Transactions on Industrial Electronics, vol.64, no.6, pp. 5035–5044, 2017. DOI: https://doi.org/10.1109/TIE.2016.2638398.

    Article  Google Scholar 

  53. I. Mas, C. Kitts. Object manipulation using cooperative mobile multi-robot systems. In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, USA, 2012.

  54. W. Li. Notion of control-law module and modular framework of cooperative transportation using multiple non-holonomic robotic agents with physical rigid-formation-motion constraints. IEEE Transactions on Cybernetics, vol.46, no.5, pp. 1242–1248, 2016. DOI: https://doi.org/10.1109/TCYB.2015.2424257.

    Article  Google Scholar 

  55. W. J. Dong, J. A. Farrell. Cooperative control of multiple nonholonomic mobile agents. IEEE Transactions on Automatic Control, vol.53, no.6, pp. 1434–1448, 2008. DOI: https://doi.org/10.1109/TAC.2008.925852.

    Article  MathSciNet  MATH  Google Scholar 

  56. K. Nagasaka, Y. Kawanami, S. Shimizu, T. Kito, T. Tsuboi, A. Miyamoto, T. Fukushima, H. Shimomura. Whole-body cooperative force control for a two-armed and two-wheeled mobile robot using generalized inverse dynamics and idealized joint units. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Anchorage, USA, pp. 3377–3383, 2010. DOI: https://doi.org/10.1109/ROBOT.2010.5509474.

    Google Scholar 

  57. SLL, RA. Summit-XL mobile robot, [Online], Available: https://www.robotnik.eu/mobile-robots/summit-xl-hl/, April 01, 2020.

  58. M. Guarnieri, R. Kurazume, H. Masuda, T. Inoh, K. Takita, P. Debenest, R. Hodoshima, E. Fukushima, S. Hirose. HELIOS system: A team of tracked robots for special urban search and rescue operations. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, St. Louis, USA, pp. 2795–2800, 2009. DOI: https://doi.org/10.1109/IROS.2009.5354452.

    Google Scholar 

  59. D. Inoue, M. Konyo, S. Tadokoro. Distributed tactile sensors for tracked robots. In Proceedings of IEEE, IEEE, Daegu, Korea, pp. 1309–1312, 2006. DOI: https://doi.org/10.1109/IC-SENS.2007.355870.

    Google Scholar 

  60. Robots for Sale. CUSTOM MLT-JR Tracked Development Robot Platform with Arduino and 6-DOF Arm, [Online], Available: https://www.superdroidrobots.com/shop/item.aspx/, April 01, 2020.

  61. J. T. Feddema, C. Lewis, D. A. Schoenwald. Decentralized control of cooperative robotic vehicles: Theory and application. IEEE Transactions on Robotics and Automation, vol.18, no.5, pp.852–864, 2002. DOI: https://doi.org/10.1109/TRA.2002.803466.

    Article  Google Scholar 

  62. T. J. Liao, K. Socha, M. A. M. De Oca, T. Stuützle, M. Dorigo. Ant colony optimization for mixed-variable optimization problems. IEEE Transactions on Evolutionary Computation, vol.18, no. 4, pp. 503–518, 2013. DOI: https://doi.org/10.1109/TEVC.2013.2281531.

    Article  Google Scholar 

  63. Z. Q. Zhang, K. P. Wang, L. X. Zhu, Y. Wang. A Pareto improved artificial fish swarm algorithm for solving a multi-objective fuzzy disassembly line balancing problem. Expert Systems with Applications, vol.86, pp. 165–176, 2017. DOI: https://doi.org/10.1016/j.eswa.2017.05.053.

    Article  Google Scholar 

  64. T. H. A. Van Den Broek, N. Van De Wouw, H. Nijmeijer. Formation control of unicycle mobile robots: A virtual structure approach. In Proceedings of the 48h IEEE Conference on Decision and Control Held Jointly with the 28th Chinese Control Conference, IEEE, pp. 8328–8333, 2009. DOI: https://doi.org/10.1109/CDC.2009.5399803.

  65. J. G. Yi, H. P. Wang, J. J. Zhang, D. Z. Song, S. Jayasuriya, J. T. Liu. Kinematic modeling and analysis of skid-steered mobile robots with applications to low-cost inertial-measurement-unit-based motion estimation. IEEE Transactions on Robotics, vol.25, no.5, pp. 1087–1097, 2009. DOI: https://doi.org/10.1109/TRO.2009.2026506.

    Article  Google Scholar 

  66. O. Khatib. Mobile manipulation: The robotic assistant. Robotics and Autonomous Systems, vol.26, no. 2–3, pp. 175–183, 1999. DOI: https://doi.org/10.1016/S0921-8890(98)00067-0.

    Article  Google Scholar 

  67. J. Desai, C. C. Wang, M. Zefran, V. Kumar. Motion planning for multiple mobile manipulators. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Minneapolis, USA, pp. 2073–2078, 1996. DOI: https://doi.org/10.1109/ROBOT.1996.506176.

    Chapter  Google Scholar 

  68. Y. Yamamoto, X. P. Yun: Unified analysis on mobility and manipulability of mobile manipulators. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Detroit, USA, pp. 1200–1206, 1999. DOI: https://doi.org/10.1109/ROBOT.1999.772525.

    Google Scholar 

  69. M. Giftthaler, F. Farshidian, T. Sandy, L. Stadelmann, J. Buchli. Efficient kinematic planning for mobile manipulators with non-holonomic constraints using optimal control. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Singapore, pp. 3411–3417, 2017. DOI: https://doi.org/10.1109/ICRA.2017.7989388.

    Google Scholar 

  70. G. Oriolo, C. Mongillo. Motion planning for mobile manipulators along given end-effector paths. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Barcelona, Spain, pp. 2154–2160, 2005. DOI: https://doi.org/10.1109/ROBOT.2005.1570432.

    Google Scholar 

  71. T. G. Sugar, V. Kumar. Control of cooperating mobile manipulators. IEEE Transactions on Robotics and Automation, vol.18, no. 1, pp.94–103, 2002. DOI: https://doi.org/10.1109/70.988979.

    Article  Google Scholar 

  72. T. Sugar, V. Kumar. Decentralized control of cooperating mobile manipulators. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Leuven, Belgium, pp. 2916–2921, 1998. DOI: https://doi.org/10.1109/ROBOT.1998.680672.

    Google Scholar 

  73. K. K. Tan, S. N. Huang, T. H. Lee. Decentralized adaptive controller design of large-scale uncertain robotic systems. Automatica, vol.45, no. 1, pp. 161–166, 2009. DOI: https://doi.org/10.1016/j.automatica.2008.06.005.

    Article  MathSciNet  MATH  Google Scholar 

  74. E. Simetti, A. Turetta, G. Casalino. Distributed control and coordination of cooperative mobile manipulator systems. In Proceedings of the Distributed Autonomous Robotic Systems 8, Springer, Berlin, Heidelberg, pp. 315–324, 2009. DOI: https://doi.org/10.1007/978-3-642-00644-9_28.

    Google Scholar 

  75. R. Tinos, M. H. Terra, J. Y. Ishihara. Motion and force control of cooperative robotic manipulators with passive joints. IEEE Transactions on Control Systems Technology, vol.14, no. 4, pp. 725–734, 2006. DOI: https://doi.org/10.1109/TC-ST.2006.872505.

    Article  Google Scholar 

  76. G. P. Incremona, G. De Felici, A. Ferrara, E. Bassi. A supervisory sliding mode control approach for cooperative robotic system of systems. IEEE Systems Journal, vol.9, no.1, pp. 263–272, 2015. DOI: https://doi.org/10.1109/JSYST.2013.2286509.

    Article  Google Scholar 

  77. R. Rastegari, S. A. A. Moosavian. Multiple impedance control of cooperative manipulators using virtual object grasp. In Proceedings of IEEE Conference on Computer Aided Control System Design, IEEE International Conference on Control Applications, IEEE International Symposium on Intelligent Control, IEEE, Munich, Germany, pp. 2872–2877, 2006. DOI: https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4777094.

    Google Scholar 

  78. D. Heck, D. Kostić, A. Denasi, H. Nijmeijer. Internal and external force-based impedance control for cooperative manipulation. In Proceedings of European Control Conference, IEEE, Zurich, Switzerland, pp. 2299–2304, 2013. DOI: https://doi.org/10.23919/ECC.2013.6669163.

    Google Scholar 

  79. W. Gueaieb, F. Karray, S. Al-Sharhan. A robust hybrid intelligent position/force control scheme for cooperative manipulators. IEEE/ASME Transactions on Mechatronics, vol. 12, no. 2, pp. 109–125, 2007. DOI: https://doi.org/10.1109/TMECH.2007.892820.

    Article  Google Scholar 

  80. S. Phukan, C. Mahanta. A position synchronization controller for co-ordinated links (COOL) dual robot arm based on integral sliding mode: Design and experimental validation. International Journal of Automation and Computing, vol.18, pp. 110–123, 2021. DOI: https://doi.org/10.1007/S11633-020-1242-3.

    Article  Google Scholar 

  81. D. Y. Zhao, S. Y. Li, Q. M. Zhu. Adaptive jacobian synchronized tracking control for multiple robotic manipulators. In Proceedings of the 30th Chinese Control Conference, IEEE, Yantai, China, pp. 3705–3710, 2011.

    Google Scholar 

  82. M. Itoh, T. Murakami, K. Ohnishi. Decentralized control of cooperative manipulators based on virtual force transmission algorithm. In Proceedings of IEEE International Conference on Control Applications, IEEE, Kohala Coast, USA, pp. 869–874, 1999. DOI: https://doi.org/10.1109/CCA.1999.807853.

    Google Scholar 

  83. F. Caccavale, P. Chiacchio, A. Marino, L. Villani. Six-DOF impedance control of dual-arm cooperative manipulators. IEEE/ASME Transactions on Mechatronics, vol.13, no. 5, pp. 576–586, 2008. DOI: https://doi.org/10.1109/TMECH.2008.2002816.

    Article  Google Scholar 

  84. W. Gueaieb, F. Karray, S. Al-Sharhan. A robust adaptive fuzzy position/force control scheme for cooperative manipulators. IEEE Transactions on Control Systems Technology, vol.11, no. 4, pp.516–528, 2003. DOI: https://doi.org/10.1109/TCST.2003.813378.

    Article  Google Scholar 

  85. Institute of Robotics and Mechatronics. Mechatronics: SpaceJustin, [Online], Available: https://www.dlr.de/rm/en/desktopdefault.aspx/tabid-8749/, May 26, 2020.

  86. KUKA. Mobile platforms from KUKA, [Online], Available: https://www.kuka.com/ro-ro/produse-servicii/mobility/mobile-platforms, June, 01, 2020.

  87. M. A. Kamel, X. Yu, Y. M. Zhang. Fault-tolerant cooperative control design of multiple wheeled mobile robots. IEEE Transactions on Control Systems Technology, vol. 26, no. 2, pp. 756–764, 2018. DOI: https://doi.org/10.1109/TCST.2017.2679066.

    Article  Google Scholar 

  88. M. Defoort, T. Floquet, A. Kokosy, W. Perruquetti. Sliding-mode formation control for cooperative autonomous mobile robots. IEEE Transactions on Industrial Electronics, vol. 55, no. 11, pp. 3944–3953, 2008. DOI: https://doi.org/10.1109/TIE.2008.2002717.

    Article  Google Scholar 

  89. Z. Y. Wang, D. B. Gu. Cooperative target tracking control of multiple robots. IEEE Transactions on Industrial Electronics, vol.59, no.8, pp.3232–3240, 2012. DOI: https://doi.org/10.1109/TIE.2011.2146211.

    Article  Google Scholar 

  90. S. B. Marapane, M. M. Trivedi, N. Lassiter, M. B. Holder. Motion control of cooperative robotic teams through visual observation and fuzzy logic control. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Minneapolis, USA, pp. 1738–1743, 1996. DOI: https://doi.org/10.1109/ROBOT.1996.506963.

    Chapter  Google Scholar 

  91. T. Hekmatfar, E. Masehian, S. J. Mousavi. Cooperative object transportation by multiple mobile manipulators through a hierarchical planning architecture. In Proceedings of the 2nd RSI/ISM International Conference on Robotics and Mechatronics, IEEE, Tehran, Iran, pp. 503–508, 2014. DOI: https://doi.org/10.1109/ICRoM.2014.6990952.

    Google Scholar 

  92. J. Markdahl, Y. Karayiannidis, X. M. Hu, D. Kragic. Distributed cooperative object attitude manipulation. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Saint Paul, USA, pp. 2960–2965, 2012. DOI: https://doi.org/10.1109/ICRA.2012.6224665.

    Google Scholar 

  93. A. Petitti, A. Franchi, D. Di Paola, A. Rizzo. Decentralized motion control for cooperative manipulation with a team of networked mobile manipulators. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Stockholm, Sweden, pp. 441–446, 2016. DOI: https://doi.org/10.1109/ICRA.2016.7487164.

    Google Scholar 

  94. V. H. Andaluz, J. S. Ortiz, M. Pérez, F. Roberti, R. Carelli. Adaptive cooperative control of multi-mobile manipulators. In Proceedings of the 40th Annual Conference of the IEEE Industrial Electronics Society, IEEE, Dallas, USA, pp. 2669–2675, 2014. DOI: https://doi.org/10.1109/IECON.2014.7048883.

    Google Scholar 

  95. Fetch Robotics. Fetch mobile manipulator, [Online], Available: https://www.wevolver.com/wevolver.staff/fetch.mobile.manipulator/master/tree, May 26, 2020.

  96. M. Mashali, L. Wu, R. Alqasemi, R. Dubey. Controlling a non-holonomic mobile manipulator in a constrained floor space. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Brisbane, Australia, pp. 725–731, 2018. DOI: https://doi.org/10.1109/ICRA.2018.8462866.

    Google Scholar 

  97. A. Stubbs, J. G. Longtine, D. Grieselhuber Mills, P. S. Wellman, M. D. Verminski. Mobile Robot Manipulator, U.S. Patent 9688472, June 2017.

  98. C. S. Cho, J. D. Kim, S. G. Lee, S. K. Lee, S. C. Han, B. S. Kim. A study on automated mobile painting robot with permanent magnet wheels for outer plate of ship. In Proceedings of IEEE ISR 2013, IEEE, Seoul, Korea, 2013. DOI: https://doi.org/10.1109/ISR.2013.6695602.

    Google Scholar 

  99. M. J. Oh, S. M. Lee, T. W. Kim, K. Y. Lee, J. Kim. Design of a teaching pendant program for a mobile shipbuilding welding robot using a PDA. Computer-Aided Design, vol.42, no.3, pp. 173–182, 2010. DOI: https://doi.org/10.1016/j.cad.2009.09.005.

    Article  Google Scholar 

  100. M. F. M. Campos, G. A. S. Pereira, S. R. C. Vale, A. Q. Bracarense, G. A. Pinheiro, M. P. Oliveira. A mobile manipulator for installation and removal of aircraft warning spheres on aerial power transmission lines. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Washington, USA, pp. 3559–3564, 2002. DOI: https://doi.org/10.1109/ROBOT.2002.1014261.

    Google Scholar 

  101. M. Al-Fetyani, M. Hayajneh, A. Alsharkawi. Design of an executable anfis-based control system to improve the attitude and altitude performances of a quadcopter drone. International Journal of Automation and Computing, vol.18, no.1, pp. 124–140, 2021. DOI: https://doi.org/10.1007/s11633-020-1251-2.

    Article  Google Scholar 

  102. R. Fareh, T. Rabie. Tracking trajectory for nonholonomic mobile manipulator using distributed control strategy. In Proceedings of the 10th International Symposium on Mechatronics and its Applications, IEEE, Sharjah, United Arab Emirates, 2015. DOI: https://doi.org/10.1109/ISMA.2015.7373473.

    Google Scholar 

  103. B. Hamner, S. Koterba, J. Shi, R. Simmons, S. Singh. An autonomous mobile manipulator for assembly tasks. Autonomous Robots, vol.28, no.l, Article number 131, 2010. DOI: https://doi.org/10.1007/s10514-009-9142-y.

  104. Prodrone Co. PRODRONE unveils the world’s first dual robot arm large-format drone, [Online], Available: https://www.prodrone.com/archives/1420/, March 25, 2020.

  105. GEARWURX: SideArm Robotic Arm Kit, [Online], Available: https://gearwurx.com/product/sidearm/, March 25, 2020.

  106. H. L. Nieuws. Antwerp opens first command center for medical drones, [Online], Available: https://www.flandersinvestmentandtrade.com/invest/en, June 10, 2020.

  107. H. Kim, H. Seo, C. Y. Son, H. Lee, S. Kim, H. J. Kim. Cooperation in the air: A learning-based approach for the efficient motion planning of aerial manipulators. IEEE Robotics & Automation Magazine, vol.25, no. 4, pp. 76–85, 2018. DOI: https://doi.org/10.1109/MRA.2018.2866766.

    Google Scholar 

  108. F. Caccavale, G. Giglio, G. Muscio, F. Pierri. Cooperative impedance control for multiple UAVs with a robotic arm. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Hamburg, Germany, pp. 2366–2371, 2015. DOI: https://doi.org/10.1109/IROS.2015.7353697.

    Google Scholar 

  109. Y. Q. Wu, J. Song, J. B. Sun, F. F. Zhu, H. Y. Chen. Aerial grasping based on VR perception and haptic control. In Proceedings of IEEE International Conference on Real-time Computing and Robotics, IEEE, Kandima, Maldives, pp. 556–562, 2018. DOI: https://doi.org/10.1109/RCAR.2018.8621786.

    Google Scholar 

  110. T. Yoshikawa, X. Z. Zheng. Coordinated dynamic hybrid position/force control for multiple robot manipulators handling one constrained object. The International Journal of Robotics Research, vol. 12, no. 3, pp. 219–230, 1993. DOI: https://doi.org/10.1177/027836499301200302.

    Article  Google Scholar 

  111. A. Petitti, A. Franchi, D. Di Paola, A. Rizzo. Decentralized motion control for cooperative manipulation with a team of networked mobile manipulators. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Stockholm, Sweden, pp. 441–446, 2016. DOI: https://doi.org/10.1109/ICRA.2016.7487164.

    Google Scholar 

  112. A. E. Jimenez-Cano, G. Heredia, M. Bejar, K. Kondak, A. Ollero. Modelling and control of an aerial manipulator consisting of an autonomous helicopter equipped with a multi-link robotic arm. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol.230, no. 10, pp. 1860–1870, 2016. DOI: https://doi.org/10.1177/0954410015619442.

    Article  Google Scholar 

  113. G. Giglio, F. Pierri. Selective compliance control for an unmanned aerial vehicle with a robotic arm. In Proceedings of the 22nd Mediterranean Conference on Control and Automation, IEEE, Palermo, Italy, pp. 1190–1195, 2014. DOI: https://doi.org/10.1109/MED.2014.6961537.

    Chapter  Google Scholar 

  114. L. S. Mello, G. V. Raffo, B. V. Adorno. Robust whole-body control of an unmanned aerial manipulator. In Proceedings of European Control Conference, IEEE, Aalborg, Denmark, pp. 702–707, 2016. DOI: https://doi.org/10.1109/ECC.2016.7810371.

    Google Scholar 

  115. G. Arleo, F. Caccavale, G. Muscio, F. Pierri. Control of quadrotor aerial vehicles equipped with a robotic arm. In Proceedings of the 21st Mediterranean Conference on Control and Automation, IEEE, Platanias, Greece, pp. 1174–1180, 2013. DOI: https://doi.org/10.1109/MED.2013.6608869.

    Chapter  Google Scholar 

  116. N. Tardella. Earthbound robots today need to take flight, [Online], Available: https://spectrum.ieee.org/automaton/robotics/industrialrobots/earthbound-robots-today-need-to-take-flight, June 09, 2020”.

  117. G. Muscio, F. Pierri, M. A. Trujillo, E. Cataldi, G. Antonelli, F. Caccavale, A. Viguria, S. Chiaverini, A. Ollero. Coordinated control of aerial robotic manipulators: Theory and experiments. IEEE Transactions on Control Systems Technology, vol. 26, no. 4, pp. 1406–1413, 2018. DOI: https://doi.org/10.1109/TCST.2017.2716905.

    Article  Google Scholar 

  118. P. Leica, K. Rivera, S. Muela, D. Chávez, G. Andaluz, V. H. Andaluz. Consensus algorithms for bidirectional tele-operation of aerial manipulator robots in an environment with obstacles. In Proceedings of IEEE Fourth Ecuador Technical Chapters Meeting, IEEE, Guayaquil, Ecuador, 2019. DOI: https://doi.org/10.1109/ETCM48019.2019.9014872.

    Google Scholar 

  119. H. Lee, H. Kim, H. J. Kim. Planning and control for collision-free cooperative aerial transportation. IEEE Transactions on Automation Science and Engineering, vol. 15, no.1, pp. 189–201, 2018. DOI: https://doi.org/10.1109/TASE.2016.2605707.

    Article  Google Scholar 

  120. K. U. Lee, Y. H. Choi. Dynamic surface control based tracking control for a drone equipped with a manipulator. The Transactions of The Korean Institute of Electrical Engineers, vol.66, no.7, pp. 1123–1130, 2017. DOI: https://doi.org/10.5370/KIEE.2017.66.7.1123.

    Google Scholar 

  121. O. Bourquardez, R. Mahony, N. Guenard, F. Chaumette, T. Hamel, L. Eck. Image-based visual servo control of the translation kinematics of a quadrotor aerial vehicle. IEEE Transactions on Robotics, vol.25, no. 3, pp. 743–749, 2009. DOI: https://doi.org/10.1109/TRO.2008.2011419.

    Article  Google Scholar 

  122. H. Lee, C. Y. Son, H. J. Kim. Collision-free path planning for cooperative aerial manipulators under velocity and curvature constraints. IEEE Access, vol. 7, pp. 171153–171162, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2946273.

    Article  Google Scholar 

  123. J. G. Wang, Y. M. Li. Hybrid impedance control of a 3-DOF robotic arm used for rehabilitation treatment. In Proceedings of IEEE International Conference on Automation Science and Engineering, IEEE, Toronto, Canada, pp. 768–773, 2010. DOI: https://doi.org/10.1109/COASE.2010.5584259.

    Google Scholar 

  124. S. J. Ball, I. E. Brown, S. H. Scott. A planar 3DOF robotic exoskeleton for rehabilitation and assessment. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, Lyon, France, pp. 4024–4027, 2007. DOI: https://doi.org/10.1109/IEMBS.2007.4353216.

    Google Scholar 

  125. S. K. Mustafa, G. L. Yang, S. H. Yeo, W. Lin, I. M. Chen. Self-calibration of a biologically inspired 7 DOF cable-driven robotic arm. IEEE/ASME Transactions on Mechatronics, vol.13, no. 1, pp.66–75, 2008. DOI: https://doi.org/10.1109/TMECH.2007.915024.

    Article  Google Scholar 

  126. S. Kumra, R. Saxena, S. Mehta. Design and development of 6-DOF robotic arm controlled by man machine interface. In Proceedings of IEEE International Conference on Computational Intelligence and Computing Research, IEEE, Coimbatore, India, 2012. DOI: https://doi.org/10.1109/ICCIC.2012.6510243.

    Google Scholar 

  127. C. Y. Song, S. Lee, K. Kim. RoMAN-MD: 6 DOF humanoid arm for medical applications. In Proceedings of IEEE Workshop on Advanced Robotics and its Social Impacts, IEEE, Seoul, Korea, pp. 123–123, 2010. DOI: https://doi.org/10.1109/ARSO.2010.5680025.

    Google Scholar 

  128. K. Izumi, K. Watanabe, K. Ichida, Y. Tachibana. The design of fuzzy energy regions optimized by GA for a switching control of multi-link underactuated manipulators. In Proceedings of International Conference on Control, Automation and Systems, IEEE, Seoul, Korea, pp. 24–29, 2007. DOI: https://doi.org/10.1109/ICCAS.2007.4406873.

    Google Scholar 

  129. R. Bhandari, V. Kalaichelvi. Analysis and control techniques for two-link underactuated manipulator. In Proceedings of the 4th IEEE International Conference on Engineering Technologies and Applied Sciences, IEEE, Salmabad, Bahrain, pp. 1–5, 2017. DOI: https://doi.org/10.1109/ICETAS.2017.8277874.

    Google Scholar 

  130. D. Liu, X. Z. Lai, Y. W. Wang, X. B. Wan. Position control of a planar four-link underactuated manipulator. In Proceedings of the 37th Chinese Control Conference, IEEE, Wuhan, China, pp. 929–932, 2018. DOI: https://doi.org/10.23919/ChiCC.2018.8483418.

    Google Scholar 

  131. R. Muthusamy, J. M. Indave, P. K. Muthusamy, E. F. Hasan, Y. Zweiri, V. Kyrki, D. M. Gan. Investigation and design of robotic assistance control system for cooperative manipulation. In Proceedings of the 9th IEEE Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, IEEE, Suzhou, China, pp. 889–895, 2019. DOI: https://doi.org/10.1109/CYBER46603.2019.9066573.

    Google Scholar 

  132. L. Han, X. L. Cheng, W. F. Xu, G. D. Tan. Reconfigurable wireless control system for a dual-arm cooperative robotic system. In Proceedings of IEEE International Conference on Robotics and Biomimetics, IEEE, Macau, Macao, pp. 202–207, 2017. DOI: https://doi.org/10.1109/ROBIO.2017.8324418.

    Google Scholar 

  133. A. Nugroho, E. M. Yuniarno, M. H. Purnomo. Cooperative multi-agent for the end-effector position of robotic arm based on consensus and PID controller. In Proceedings of IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications, IEEE, Tianjin, China, 2019. DOI: https://doi.org/10.1109/CIVEMSA45640.2019.9071621.

    Google Scholar 

  134. S. Ali, A. Moosavian, M. Mostafavi. Multiple impedance control of redundant manipulators. In Proceedings of the 2006 IEEE Conference on Robotics, Automation and Mechatronics, IEEE, Bangkok, Thailand, 2006. DOI: https://doi.org/10.1109/RAMECH.2006.252728.

    Google Scholar 

  135. S. M. Li, R. P. Li. Research on trajectory tracking control of multiple degree of freedom manipulator. In Proceedings of the 32nd Youth Academic Annual Conference of Chinese Association of Automation, IEEE, Hefei, pp. 218–222, 2017. DOI: https://doi.org/10.1109/YAC.2017.7967408.

    Google Scholar 

  136. H. Osumi, M. Terasawa, H. Nojiri. Cooperative control of multiple mobile manipulators on uneven ground. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Leuven, Belgium, pp. 3198–3203, 1998. DOI: https://doi.org/10.1109/ROBOT.1998.680917.

    Google Scholar 

  137. Y. H. Liu, S. Arimoto, V. Parra-Vega, K. Kitagaki. Adaptive distributed cooperation controller for multiple manipulators. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, IEEE, Pittsburgh, USA, pp. 489–494, 1995. DOI: https://doi.org/10.1109/IROS.1995.525841.

    Google Scholar 

  138. H. Ghariblu, A. Javanmard. Maximum allowable load of two cooperative manipulators. In Proceedings of the 2nd International Conference on Computer Engineering and Applications, IEEE, Bali, Indonesia, pp. 566–570, 2010. DOI: https://doi.org/10.1109/ICCEA.2010.259.

    Google Scholar 

  139. L. Labakhua, I. Martins, M. Igor. Control of a mobile robot with Swedish wheels. In Proceedings of IEEE International Conference on Power, Control, Signals and Instrumentation Engineering, IEEE, Chennai, India, pp. 267–272, 2017. DOI: https://doi.org/10.1109/ICPCSI.2017.8392225.

    Google Scholar 

  140. H. P. Wang, B. J. Li, J. T. Liu, Y. Yang, Y. Zhang. Dynamic modeling and analysis of wheel skid steered mobile robots with the different angular velocities of four wheels. In Proceedings of the 30th Chinese Control Conference, IEEE, Yantai, China, pp. 3919–3924, 2011.

    Google Scholar 

  141. K. H. Seo, J. H. Suh. Path planning of mobile robot in partitioned wireless sensor networks. In Proceedings of the 9th International Conference on Ubiquitous Robots and Ambient Intelligence, IEEE, Daejeon, Korea, pp. 619–622, 2012. DOI: https://doi.org/10.1109/URAI.2012.6463098.

    Google Scholar 

  142. D. Y. Kim, J. H. Kim, D. Kim. Development of an omnidirectional mobile base utilizing spherical robots as wheels. In Proceedings of the 14th International Conference on Ubiquitous Robots and Ambient Intelligence, IEEE, Jeju, Korea, pp. 370–371, 2017. DOI: https://doi.org/10.1109/URAI.2017.7992754.

    Google Scholar 

  143. Y. G. Kim, J. H. Kwak, D. H. Hong, J. H. Ahn, S. G. Wee, J. An. Localization strategy based on multi-robot collaboration for indoor service robot applications. In Proceedings of 10th International Conference on Ubiquitous Robots and Ambient Intelligence, IEEE, pp. 225–226, 2013. DOI: https://doi.org/10.1109/URAI.2013.6677348.

  144. A. Souliman, A. Joukhadar, H. Alturbeh, J.F. Whid-borne. Real time control of multi-agent mobile robots with intelligent collision avoidance system. In Proceedings of Science and Information Conference, IEEE, London, UK, pp. 93–98, 2013.

    Google Scholar 

  145. L. Qingqing, F. Yuhong, J. P. Queralta, T. N. Gia, H. Tenhunen, Z. Zou, T. Westerlund. Edge computing for mobile robots: Multi-robot feature-based lidar odometry with FPGAs. In Proceedings of the 12th International Conference on Mobile Computing and Ubiquitous Network, IEEE, Kathmandu, Nepal, pp. 1–2, 2019. DOI: https://doi.org/10.23919/ICMU48249.2019.9006646.

    Google Scholar 

  146. J. Meng, A. B. Liu, Y. Q. Yang, Z. Wu, Q. Y. Xu. Two-wheeled robot platform based on PID control. In Proceedings of the 5th International Conference on Information Science and Control Engineering, IEEE, Zhengzhou, China, pp. 1011–1014, 2018. DOI: https://doi.org/10.1109/ICISCE.2018.00208.

    Google Scholar 

  147. D. Q. Cui, X. S. Gao, W. Z. Guo, H. Dong. Design and stability analysis of a wheel-track robot. In Proceedings of the 3rd International Conference on Information Science and Control Engineering, IEEE, Beijing, China, pp. 918–922, 2016. DOI: https://doi.org/10.1109/ICISCE.2016.200.

    Google Scholar 

  148. Z. Q. Fan, Q. Qiu, Z. J. Meng. Implementation of a four-wheel drive agricultural mobile robot for crop/soil information collection on the open field. In Proceedings of the 32nd Youth Academic Annual Conference of Chinese Association of Automation, IEEE, Hefei, China, pp. 408–412, 2017. DOI: https://doi.org/10.1109/YAC.2017.7967443.

    Google Scholar 

  149. S. Khatoon, D. K. Chaturvedi, N. Hasan, M. Istiyaque. Optimal controller design for two wheel mobile robot. In Proceedings of the 3rd International Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity, IEEE, Ghaziabad, India, 2018. DOI: https://doi.org/10.1109/CIPECH.2018.8724314.

    Google Scholar 

  150. H. Bin, L. W. Zhen, L. H. Feng. The kinematics model of a two-wheeled self-balancing autonomous mobile robot and its simulation. In Proceedings of the 2nd International Conference on Computer Engineering and Applications, IEEE, Bali, Indonesia, pp. 64–68, 2010. DOI: https://doi.org/10.1109/ICCEA.2010.169.

    Google Scholar 

  151. S. Kim, S. Kwon. Nonlinear control design for a two-wheeled balancing robot. In Proceedings of the 10th International Conference on Ubiquitous Robots and Ambient Intelligence, IEEE, Jeju, Korea, pp. 486–487, 2013. DOI: https://doi.org/10.1109/URAI.2013.6677319.

    Google Scholar 

  152. S. Wenxia, C. Wei. Simulation and debugging of LQR control for two-wheeled self-balanced robot. In Proceedings of Chinese Automation Congress, IEEE, Jinan, China, pp. 2391–2395, 2017. DOI: https://doi.org/10.1109/CAC.2017.8243176.

    Google Scholar 

  153. D. Sharipov, Z. Abdullaev, Z. Tazhiev, O. Khafizov. Implementation of a mathematical model of a hexacopter control system. In Proceedings of International Conference on Information Science and Communications Technologies, IEEE, Tashkent, Uzbekistan, pp. 1–5, 2019. DOI: https://doi.org/10.1109/ICISCT47635.2019.9011842.

    Google Scholar 

  154. B. X. Yang, G. X. Du, Q. Quan, K. Y. Cai. The degree of controllability with limited input and an application for hexacopter design. In Proceedings of the 32nd Chinese Control Conference, IEEE, Xi’an, China, pp. 113–118, 2013.

    Google Scholar 

  155. E. Apriaskar, Y. P. Nugraha, B. R. Trilaksono. Simulation of simultaneous localization and mapping using hexacopter and RGBD camera. In Proceedings of the 2nd International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology, IEEE, Jakarta, Indonesia, pp. 48–53, 2017. DOI: https://doi.org/10.1109/ICACOMIT.2017.8253385.

    Google Scholar 

  156. R. Szabo. Terrestrial drone creation from rover, robotic arm and raspberry Pi with sun tracker function. In Proceedings of International Symposium on Electronics and Telecommunications, IEEE, Timisoara, Romania, 2018. DOI: https://doi.org/10.1109/ISETC.2018.8583988.

    Google Scholar 

  157. D. Kim, P. Y. Oh. Lab automation drones for mobile manipulation in high throughput systems. In Proceedings of IEEE International Conference on Consumer Electronics, IEEE, Las Vegas, USA, 2018. DOI: https://doi.org/10.1109/ICCE.2018.8326268.

    Google Scholar 

  158. L. L. Shi, H. Jayakody, J. Katupitiya, X. Jin. Coordinated control of a dual-arm space robot: Novel models and simulations for robotic control methods. IEEE Robotics & Automation Magazine, vol.25, no.4, pp.86–95, 2018. DOI: https://doi.org/10.1109/MRA.2018.2864717.

    Article  Google Scholar 

  159. D. Cabecinhas, R. Naldi, C. Silvestre, R. Cunha, L. Marconi. Robust landing and sliding maneuver hybrid controller for a quadrotor vehicle. IEEE Transactions on Control Systems Technology, vol.24, no. 2, pp. 400–412, 2016. DOI: https://doi.org/10.1109/TCST.2015.2454445.

    Article  Google Scholar 

  160. Y. F. Teng, B. Hu, Z. W. Liu, J. Huang, Z. H. Guan. Adaptive neural network control for quadrotor unmanned aerial vehicles. In Proceedings of the 11th Asian Control Conference, IEEE, Gold Coast, Australia, pp. 988–992, 2017. DOI: https://doi.org/10.1109/ASCC.2017.8287305.

    Google Scholar 

  161. Q. Yin, B. Xian, Y. Zhang, Y. P. Yu, H. T. Li, W. Zeng. Visual simulation system for quadrotor unmanned aerial vehicles. In Proceedings of the 30th Chinese Control Conference, IEEE, Yantai, China, pp. 454–459, 2011.

    Google Scholar 

  162. T. Bartelds, A. Capra, S. Hamaza, S. Stramigioli, M. Fumagalli. Compliant aerial manipulators: Toward a new generation of aerial robotic workers. IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 477–483, 2016. DOI: https://doi.org/10.1109/LRA.2016.2519948.

    Article  Google Scholar 

  163. P. Chermprayong, K. T. Zhang, F. Xiao, M. Kovac. An integrated delta manipulator for aerial repair: A new aerial robotic system. IEEE Robotics & Automation Magazine, vol.26, no.1, pp.54–66, 2019. DOI: https://doi.org/10.1109/MRA.2018.2888911.

    Article  Google Scholar 

  164. K. Turkovic, M. Car, M. Orsag. End-effector force estimation method for an unmanned aerial manipulator. In Proceedings of the Workshop on Research, Education and Development of Unmanned Aerial Systems, IEEE, Cranfield, UK, pp. 96–99, 2019. DOI: https://doi.org/10.1109/REDUAS47371.2019.8999670.

    Google Scholar 

  165. Z. G. Zhou, Y. A. Zhang, D. Zhou. Geometric modeling and control for the full-actuated aerial manipulating system. In Proceedings of the 35th Chinese Control Conference, IEEE, Chengdu, China, pp. 6178–6182, 2016. DOI: https://doi.org/10.1109/ChiCC.2016.7554326.

    Google Scholar 

  166. M. Kamel, K. Alexis, R. Siegwart. Design and modeling of dexterous aerial manipulator. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Daejeon, Korea, pp. 4870–4876, 2016. DOI: https://doi.org/10.1109/IROS.2016.7759715.

    Google Scholar 

  167. A. Suarez, G. Heredia, A. Ollero. Design of an anthropomorphic, compliant, and lightweight dual arm for aerial manipulation. IEEE Access, vol.6, pp. 29173–29189, 2018. DOI: https://doi.org/10.1109/ACCESS.2018.2833160.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Botswana International University of Science and Technology (BIUST) Drones Project (No. P00015). Besides, the authors would also like to acknowledge Dr. Mmoloki Mangwala, Keletso Z. Thebe, and Thato Elijah for assisting with editing, suggestions, and corrections of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larona Pitso Ramalepa.

Additional information

Recommended by Editor-in-Chief Huo-Sheng Hu

Colored figures are available in the online version at https://link.springer.com/journal/11633

Larona Pitso Ramalepa received the B. Eng. degree in aircraft and aerospace engineering from the St Petersburg State University of Aerospace Instrumentation, Russia in 2017. He is a master student in mechatronics and industrial instrumentation at Botswana International University of Science and Technology, Botswana.

His research interests include mechatronics, avionics, and robotics.

E-mail: rll9100043@studentmail.biust.ac.bw (Corresponding author)

ORCID iD: 0000-0002-2351-5803

Rodrigo S. Jamisola Jr. received the B. Sc. degree in mechanical engineering from University of the Philippines-Diliman, Philippines in 1993, received the M. Eng. degree (research-based) in mechanical engineering from National University of Singapore, Singapore in 2001, received the M. Sc. degree in electrical and computer engineering from Colorado State University, USA in 2006, and received the Ph. D. degree in electronics and communications engineering from De La Salle University-Manila, Philippines in 2009. He joined De La Salle University as an assistant professor in 2008 and Toyota Motor Philippines as R&D manager in 2011. He was a post-doctoral research fellow at Daegu-Gyeongbuk Institute of Science and Technology, Korea, and then at Italian Institute of Technology, Italy. He is currently an associate professor at Botswana International University of Science and Technology, Botswana.

His research interests include control of combined manipulators, machine learning, numerical optimization, and human-machine interfaces.

E-mail: jamisolar@biust.ac.bw

ORCID iD: 0000-0002-6481-1545

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramalepa, L.P., Jamisola, R.S. A Review on Cooperative Robotic Arms with Mobile or Drones Bases. Int. J. Autom. Comput. 18, 536–555 (2021). https://doi.org/10.1007/s11633-021-1299-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-021-1299-7

Keywords