Skip to main content

Advertisement

Log in

A 2D Mapping Method Based on Virtual Laser Scans for Indoor Robots

  • Research Article
  • Published:
International Journal of Automation and Computing Aims and scope Submit manuscript

Abstract

The indoor robots are expected to complete metric navigation tasks safely and efficiently in complex environments, which is the essential prerequisite for accomplishing other high-level operation tasks. 2D occupancy grid maps are sufficient to support the robots in avoiding all obstacles in the environments during navigation. However, the maps based on normal laser scans only reflect a horizontal slice of the environment, which may cause the problem of some obstacles missing or misinterpreting their exact boundaries, thereby threatening the safety and efficiency of robot navigation. This paper presents a 2D mapping method based on virtual laser scans to provide a more comprehensive representation of obstacles for indoor robot navigation. The resulting maps can accurately represent the top-down projected contours of all obstacles no matter where their vertical positions are. The virtual laser scans are initially generated from raw data of an RGB-D camera based on the filtering, projection, and polar-coordinate scanning. The scans are fed directly to the laser-based simultaneous localization and mapping (SLAM) algorithms to update the current map and robot position. Two auxiliary strategies are proposed to further improve the quality of maps by reducing the impact of the narrow field of view and the blind zone of the RGB-D camera on the observations. In this paper, the improved virtual laser generation method makes the extracted 2D observations fit the laser-based SLAM algorithms, and two auxiliary strategies are novel ways to improve map quality. The generated maps can reflect the comprehensive obstacle information in indoor environments with good accuracy. The comparative experiments are carried out based on four simulation scenarios and three real-world scenarios to prove the effectiveness of our 2D mapping method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Y. Zhang, G. H. Tian, J. X. Lu, M. Y. Zhang, S. Y. Zhang. Efficient dynamic object search in home environment by mobile robot: A priori knowledge-based approach. IEEE Transactions on Vehicular Technology, vol.68, no. 10, pp. 9466–9477, 2019. DOI: https://doi.org/10.1109/TVT.2019.2934509.

    Article  Google Scholar 

  2. I. Ardiyanto, J. Miura. Time-space viewpoint planning for guard robot with chance constraint. International Journal of Automation and Computing, vol.16, no. 4, pp. 475–490, 2019. DOI: https://doi.org/10.1007/s11633-018-1146-7.

    Article  Google Scholar 

  3. X. X. Zhang, G. K. Lu, G. P. Fu, D. L. Xu, S. L. Liang. SLAM algorithm analysis of mobile robot based on lidar. In Proceedings of Chinese Control Conference, IEEE, Guangzhou, China, pp. 4739–4745, 2019. DOI: https://doi.org/10.23919/ChiCC.2019.8866200.

    Google Scholar 

  4. Y. B. Chen, B. Leighton, H. S. Zhu, X. J. Ke, S. T. Liu, L. Zhao. Submap-based indoor navigation system for the fetch robot. IEEE Access, vol.8, pp. 81479–81491, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.2991465.

    Article  Google Scholar 

  5. J. Gimenez, A. Amicarelli, J. M. Toibero, F. di Sciascio, R. Carelli. Continuous probabilistic SLAM solved via iterated conditional modes. International Journal of Automation and Computing, vol. 16, no. 6, pp. 838–850, 2019. DOI: https://doi.org/10.1007/s11633-019-1186-7.

    Article  Google Scholar 

  6. I. Kostavelis, A. Gasteratos. Semantic maps from multiple visual cues. Expert Systems with Applications, vol.68, pp. 45–57, 2017. DOI: https://doi.org/10.1016/j.eswa.2016.10.014.

    Article  Google Scholar 

  7. L. H. Chen, C. C. Peng. A robust 2D-SLAM technology with environmental variation adaptability. IEEE Sensors Journal, vol.19, no. 23, pp. 11475–11491, 2019. DOI: https://doi.org/10.1109/JSEN.2019.2931368.

    Article  Google Scholar 

  8. C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, J. J. Leonard. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on Robotics, vol.32, no.6, pp. 1309–1332, 2016. DOI: https://doi.org/10.1109/TRO.2016.2624754.

    Article  Google Scholar 

  9. J. H. Zhao, L. Zhao, S. D. Huang, Y. Wang. 2D laser SLAM with general features represented by implicit functions. IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4329–4336, 2020. DOI: https://doi.org/10.1109/LRA.2020.2996795.

    Article  Google Scholar 

  10. S. Thrun. Robotic mapping: A survey. Exploring Artificial Intelligence in the New Millennium, G. Lakemeyer, B. Nebel, Eds., San Francisco, USA: Morgan Kaufmann Publishers Inc., pp. 1–35, 2003.

    Google Scholar 

  11. M. Filipenko, I. Afanasyev. Comparison of various slam systems for mobile robot in an indoor environment. In Proceedings of International Conference on Intelligent Systems, IEEE, Funchal, Portugal, pp. 400–407, 2018. DOI: https://doi.org/10.1109/IS.2018.8710464.

    Google Scholar 

  12. W. G. Aguilar, S. G. Morales. 3D environment mapping using the Kinect V2 and path planning based on RRT algorithms. Electronics, vol.5, no.4, Article number 70, 2016. DOI: https://doi.org/10.3390/electronics5040070.

  13. J. Chen, S. J. Shen. Improving octree-based occupancy maps using environment sparsity with application to aerial robot navigation. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Singapore, pp. 3656–3663, 2017. DOI: https://doi.org/10.1109/ICRA.2017.7989419.

    Google Scholar 

  14. P. Corke. Robotics, Vision and Control: Fundamental Algorithms in MATLAB®, 2nd ed., Berlin, Germany: Springer, 2017. DOI: https://doi.org/10.1007/978-3-319-54413-7.

    Book  Google Scholar 

  15. J. M. Santos, D. Portugal, R. P. Rocha. An evaluation of 2D SLAM techniques available in robot operating system. In Proceedings of IEEE International Symposium on Safety, Security, and Rescue Robotics, IEEE, Linköping, Sweden, 2013. DOI: https://doi.org/10.1109/SSRR.2013.6719348.

    Google Scholar 

  16. X. S. Le, L. Fabresse, N. Bouraqadi, G. Lozenguez. Evaluation of out-of-the-box ROS 2D SLAMS for autonomous exploration of unknown indoor environments. In Proceedings of the 11th International Conference on Intelligent Robotics and Applications, Springer, Newcastle, Australia, pp. 283–296, 2018. DOI: https://doi.org/10.1007/978-3-319-97589-4_24.

    Chapter  Google Scholar 

  17. K. Krinkin, A. Filatov, A. Y. Filatov, A. Huletski, D. Kartashov. Evaluation of modern laser based indoor SLAM algorithms. In Proceedings of the 22nd Conference of Open Innovations Association, IEEE, Jyvaskyla, Finland, pp. 101–106, 2018. DOI: https://doi.org/10.23919/FRUCT.2018.8468263.

    Google Scholar 

  18. I. Kostavelis, A. Kargakos, D. Giakoumis, D. Tzovaras. Robot’s workspace enhancement with dynamic human presence for socially-aware navigation. In Proceedings of the 11th International Conference on Computer Vision Systems, Springer, Shenzhen, China, pp. 279–288, 2017. DOI: https://doi.org/10.1007/978-3-319-68345-4_25.

    Chapter  Google Scholar 

  19. Y. Zhang, C. H. Zhang, X. Y. Shao. User preference-aware navigation for mobile robot in domestic via defined virtual area. Journal of Network and Computer Applications, vol.173, Article number 102885, 2021. DOI: https://doi.org/10.1016/j.jnca.2020.102885.

  20. C. Fulgenzi, C. Tay, A. Spalanzani, C. Laugier. Probabilistic navigation in dynamic environment using rapidly-exploring random trees and Gaussian processes. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Nice, France, pp. 1056–1062, 2008. DOI: https://doi.org/10.1109/IROS.2008.4650959.

    Google Scholar 

  21. Y. Zhang, G. H. Tian, H. Z. Chen. Exploring the cognitive process for service task in smart home: A robot service mechanism. Future Generation Computer Systems, vol.102, pp. 588–602, 2020. DOI: https://doi.org/10.1016/j.future.2019.09.020.

    Article  Google Scholar 

  22. S. Zug, F. Penzlin, A. Dietrich, T. T. Nguyen, S. Albert. Are laser scanners replaceable by Kinect sensors in robotic applications? In Proceedings of the IEEE International Symposium on Robotic and Sensors Environments Proceedings, IEEE, Magdeburg, Germany, pp. 144–149, 2012. DOI: https://doi.org/10.1109/ROSE.2012.6402619.

    Chapter  Google Scholar 

  23. K. Kamarudin, S. M. Mamduh, A. Y. Shakaff, S. M. Saad, A. Zakaria, A. H. Abdullah, L. M. Kamarudin. Method to convert Kinect’s 3D depth data to a 2D map for indoor SLAM. In Proceedings of the 9th IEEE International Colloquium on Signal Processing and Its Applications, IEEE, Kuala Lumpur, Malaysia, pp. 247–251, 2013. DOI: https://doi.org/10.1109/CSPA.2013.6530050.

    Google Scholar 

  24. J. W. Li, W. Gao, Y. H. Wu. Elaborate scene reconstruction with a consumer depth camera. International Journal of Automation and Computing, vol.15, no. 4, pp. 443–453, 2018. DOI: https://doi.org/10.1007/s11633-018-1114-2.

    Article  Google Scholar 

  25. F. Nardi, M. T. Lazaro, L. Iocchi, G. Grisetti. Generation of laser-quality 2D navigation maps from RGB-D sensors. RoboCup 2018: Robot World Cup XXII, D. Holz, K. Genter, M. Saad, O. von Stryk, Eds., Cham, Germany: Springer, pp. 238–250, 2019. DOI: https://doi.org/10.1007/978-3-030-27544-0_20.

    Chapter  Google Scholar 

  26. A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, W. Burgard. OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots, vol.34, no.3, pp. 189–206, 2013. DOI: https://doi.org/10.1007/s10514-012-9321-0.

    Article  Google Scholar 

  27. D. De Gregorio, L. Di Stefano. SkiMap: An efficient mapping framework for robot navigation. In Proceedings of the IEEE International Conference on Robotics and Automation, IEEE, Singapore, Singapore, pp. 2569–2576, 2017. DOI: https://doi.org/10.1109/ICRA.2017.7989299.

    Google Scholar 

  28. M. F. A. Ghani, K. S. M. Sahari, L. C. Kiong. Improvement of the 2D SLAM system using Kinect sensor for indoor mapping. In Proceedings of the 7th Joint International Conference on Soft Computing and Intelligent Systems and the 15th International Symposium on Advanced Intelligent Systems, IEEE, Kitakyushu, Japan, pp. 776–781, 2014. DOI: https://doi.org/10.1109/SCIS-ISIS.2014.7044753.

    Google Scholar 

  29. K. Kamarudin, S. M. Mamduh, A. Y. Shakaff, A. Zakaria. Performance analysis of the microsoft Kinect sensor for 2D simultaneous localization and mapping (SLAM) techniques. Sensors, vol.14, no. 12, pp. 23365–23387, 2014. DOI: https://doi.org/10.3390/s141223365.

    Article  Google Scholar 

  30. K. Kamarudin, S. M. Mamduh, A. S. A. Yeon, R. Visvanathan, A. Y. M. Shakaff, A. Zakaria, L. M. Kamarudin, N. A. Rahim. Improving performance of 2D SLAM methods by complementing Kinect with laser scanner. In Proceedings of IEEE International Symposium on Robotics and Intelligent Sensors, Langkawi, Malaysia, IEEE, pp. 278–283, 2015. DOI: https://doi.org/10.1109/IRIS.2015.7451625.

    Google Scholar 

  31. Q. Y. Lang, F. C. Sun, H. P. Liu, B. Wang, M. Gao, J. K. Li, Q. Zhang. An evaluation of 2D SLAM techniques based on Kinect and laser scanner. In Proceedings of the 3rd International Conference on Cognitive Systems and Signal Processing, Springer, Beijing, China, pp. 276–289, 2017. DOI: https://doi.org/10.1007/978-981-10-5230-9_29.

    Chapter  Google Scholar 

  32. H. S. Zhu, B. Leighton, Y. B. Chen, X. J. Ke, S. T. Liu, L. Zhao. Indoor navigation system using the fetch robot. In Proceedings of the 12th International Conference on Intelligent Robotics and Applications, Springer, Shenyang, China, pp. 686–696, 2019. DOI: https://doi.org/10.1007/978-3-030-27538-9_59.

    Chapter  Google Scholar 

  33. X. F. Han, J. S. Jin, M. J. Wang, W. Jiang, L. Gao, L. P. Xiao. A review of algorithms for filtering the 3D point cloud. Signal Processing: Image Communication, vol.57, pp. 103–112, 2017. DOI: https://doi.org/10.1016/j.image.2017.05.009.

    Google Scholar 

  34. T. Dziubich, J. Szymanski, A. Brzeski, J. Cychnerski, W. Korlub. Depth images filtering in distributed streaming. Polish Maritime Research, vol.23, no. 2, pp. 91–98, 2016. DOI: https://doi.org/10.1515/pomr-2016-0025.

    Article  Google Scholar 

  35. K. Konolige, G. Grisetti, R. Kummerle, W. Burgard, B. Limketkai, R. Vincent. Efficient sparse pose adjustment for 2D mapping. In Proceedings of IEEE/ RSJ International Conference on Intelligent Robots and Systems, IEEE, Taipei, China, pp. 22–29, 2010. DOI: https://doi.org/10.1109/IROS.2010.5649043.

    Google Scholar 

  36. H. Durrant-Whyte, T. Bailey. Simultaneous localization and mapping: Part I. IEEE Robotics & Automation Magazine, vol.13, no. 2, pp. 99–110, 2006. DOI: https://doi.org/10.1109/MRA.2006.1638022.

    Article  Google Scholar 

  37. G. Grisetti, C. Stachniss, W. Burgard. Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Transactions on Robotics, vol.23, no. 1, pp. 34–46, 2007. DOI: https://doi.org/10.1109/TRO.2006.889486.

    Article  Google Scholar 

  38. M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Ng. ROS: An open-source robot operating system. In Proceedings of ICRA Workshop on Open Source Software, Kobe, Japan, 2009.

  39. M. M. Johnson. Statistical computer programs: Simple linear regression. Journal of Quality Technology, vol. 3, no. 3, pp. 138–143, 1971. DOI: https://doi.org/10.1080/00224065.1971.11980479.

    Article  Google Scholar 

  40. S. Kohlbrecher, O. von Stryk, J. Meyer, U. Klingauf. A flexible and scalable SLAM system with full 3D motion estimation. In Proceedings of IEEE International Symposium on Safety, Security, and Rescue Robotics, IEEE, Kyoto, Japan, pp. 155–160, 2011. DOI: https://doi.org/10.1109/SSRR.2011.6106777.

    Chapter  Google Scholar 

  41. W. Hess, D. Kohler, H. Rapp, D. Andor. Real-time loop closure in 2D LIDAR SLAM. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Stockholm, Sweden, pp. 1271–1278, 2016. DOI: https://doi.org/10.1109/ICRA.2016.7487258.

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. U1813215 and 61773239), the Taishan Scholars Program of Shandong Province (No. ts201511005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Hui Tian.

Additional information

Colored figures are available in the online version at https://link.springer.com/journal/11633

Xu-Yang Shao

received the B. Sc. degree in automation from Qingdao University of Science and Technology, China in 2018. He is now a master student in control engineering, Shandong University, China.

His research interests include SLAM, indoor mapping, autonomous navigation, and service robots.

Guo-Hui Tian received the B. Sc. degree in control science from Department of Mathematics, Shandong University, China in 1990, the M. Sc. degree in industrial automation from Department of Automation, Shandong University of Technology, China in 1993, and the Ph. D. degree in automatic control theory and application from School of Automation, Northeastern University, China in 1997. He studied as a post-doctorial researcher in School of Mechanical Engineering, Shandong University, China from 1999 to 2001, and studied as a visiting professor in Graduate School of Engineering, Tokyo University, Japan from 2003 to 2005. He was a lecturer from 1997 to 1998 and an associate professor from 1998 to 2002 in Shandong University, China. At present, he is a professor in School of Control Science and Engineering, Shandong University, China. And also he is the Vice Director of the Intelligence Robot Specialized Committee of

Chinese Association for Artificial Intelligence, the Vice Director of the Intelligent Manufacturing System Specialized Committee of Chinese Association for Automation, and the member of the IEEE Robotics and Automation Society.

His research interests include service robot, intelligent space, cloud robotics, and brain-inspired intelligent robotics.

Ying Zhang received the B. Sc. degree in automatic control from Heze University, China in 2014, the M. Sc. degree in control theory and control engineering from Shandong Jianzhu University, China in 2017. He is a Ph. D. degree candidate in control theory and control engineering at Shandong University, China.

His research interests include intelligent robot system, knowledge representation and mapping.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, XY., Tian, GH. & Zhang, Y. A 2D Mapping Method Based on Virtual Laser Scans for Indoor Robots. Int. J. Autom. Comput. 18, 747–765 (2021). https://doi.org/10.1007/s11633-021-1304-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-021-1304-1

Keywords