Skip to main content

Advertisement

Log in

Supervised and Semi-supervised Methods for Abdominal Organ Segmentation: A Review

  • Review
  • Pattern Recognition & Computer Vision
  • Published:
International Journal of Automation and Computing Aims and scope Submit manuscript

Abstract

Abdominal organ segmentation is the segregation of a single or multiple abdominal organ(s) into semantic image segments of pixels identified with homogeneous features such as color and texture, and intensity. The abdominal organ(s) condition is mostly connected with greater morbidity and mortality. Most patients often have asymptomatic abdominal conditions and symptoms, which are often recognized late; hence the abdomen has been the third most common cause of damage to the human body. That notwithstanding, there may be improved outcomes where the condition of an abdominal organ is detected earlier. Over the years, supervised and semi-supervised machine learning methods have been used to segment abdominal organ(s) in order to detect the organ(s) condition. The supervised methods perform well when the used training data represents the target data, but the methods require large manually annotated data and have adaptation problems. The semi-supervised methods are fast but record poor performance than the supervised if assumptions about the data fail to hold. Current state-of-the-art methods of supervised segmentation are largely based on deep learning techniques due to their good accuracy and success in real world applications. Though it requires a large amount of training data for automatic feature extraction, deep learning can hardly be used. As regards the semi-supervised methods of segmentation, self-training and graph-based techniques have attracted much research attention. Self-training can be used with any classifier but does not have a mechanism to rectify mistakes early. Graph-based techniques thrive on their convexity, scalability, and effectiveness in application but have an out-of-sample problem. In this review paper, a study has been carried out on supervised and semi-supervised methods of performing abdominal organ segmentation. An observation of the current approaches, connection and gaps are identified, and prospective future research opportunities are enumerated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Reuben. Examination of the abdomen. Clinical Liver Disease, vol. 7, no. 6, pp. 143–150, 2016. DOI: https://doi.org/10.1002/cld.556.

    Article  Google Scholar 

  2. T. N. C. I. Dictionary, C. Terms, G. Nci, C. T. Widget. NCI dictionary of cancer terms. National Cancer Institute. [Online], Available: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/abdominal, March 31, 2020.

    Google Scholar 

  3. M. Bilal, V. Voin, N. Topale, J. Iwanaga, M. Loukas, R. S. Tubbs. The clinical anatomy of the physical examination of the abdomen: A comprehensive review. Clinical Anatomy, vol. 30, no. 3, pp. 352–356, 2017. DOI: https://doi.org/10.1002/ca.22832.

    Article  Google Scholar 

  4. R. Kaur, M. Juneja. Comparison of different renal imaging modalities: An overview. In Progress in Intelligent Computing Techniques: Theory, Practice, and Applications, P. K. Sa, M. N. Sahoo, M. Murugappan, Y. L. Wu, B. Majhi, Eds., Singapore: Springer, pp. 47–57, 2018. DOI: https://doi.org/10.1007/978-981-10-3373-5_4.

    Chapter  Google Scholar 

  5. M. Shojaee, A. Sabzghabaei, A. Heidari. Efficacy of new scoring system for diagnosis of abdominal injury after blunt abdominal trauma in patients referred to emergency department. Chinese Journal of Traumatology, vol. 23, no. 3, pp. 145–148, 2020. DOI: https://doi.org/10.1016/j.cjtee.2020.03.003.

    Article  Google Scholar 

  6. Z. J. Ricci, S. K. Oh, M. W. Stein, B. Kaul, M. Flusberg, V. Chernyak, A. M. Rozenblit, F. S. Mazzariol. Solid organ abdominal ischemia, part I: Clinical features, etiology, imaging findings, and management. Clinical Imaging, vol. 40, no. 4, pp. 720–731, 2016. DOI: https://doi.org/10.1016/j.clin-imag.2016.02.014.

    Article  Google Scholar 

  7. Z. J. Ricci, F. S. Mazzariol, B. Kaul, S. K. Oh, V. Chernyak, M. Flusberg, M. W. Stein, A. M. Rozenblit. Hollow organ abdominal ischemia, part II: Clinical features, etiology, imaging findings and management. Clinical Imaging, vol. 40, no. 4, pp. 751–764, 2016. DOI: https://doi.org/10.1016/j.clinimag.2016.02.016.

    Article  Google Scholar 

  8. C. De Dios Soler-morejón, T. A. Lombardo-vaillant, T. O. Tamargo-Barbeito, M. L. N. G. Malbrain. Predicting abdominal surgery mortality: A model based on intra-abdominal pressure. MEDICC Review, vol. 19, no. 4, pp. 16–20, 2017. DOI: https://doi.org/10.37757/MR2017.V19.N4.5.

    Article  Google Scholar 

  9. P. Chinmayi, L. Agilandeeswari, M. Prabukumar. Survey of image processing techniques in medical image analysis: Challenges and methodologies. In Proceedings of the 8th International Conference on Soft Computing and Pattern Recognition, Springer, Vellore, India, pp. 460–471, 2016. DOI: https://doi.org/10.1007/978-3-319-60618-7_45.

    Google Scholar 

  10. M. Dabass, S. Vashisth, R. Vig. Effectiveness of region growing based segmentation technique for various medical images — a study. In Proceedings of the 4th International Conference on Recent Developments in Science, Engineering and Technology Data Science and Analytics, Gurgaon, India, Springer, pp. 234–259, 2018. DOI: https://doi.org/10.1007/978-981-10-8527-7_21.

    Google Scholar 

  11. C. Chen, C. Qin, H. Q. Qiu, G. Tarroni, J. M. Duan, W. J. Bai, D. Rueckert. Deep learning for cardiac image segmentation: A review. Frontiers in Cardiovascular Medicine, vol. 7, Article number 25, 2020. DOI: https://doi.org/10.3389/fcvm.2020.00025.

  12. G. Zhang, S. H. Dong, H. Xu, H. Y. Zhang, Y. J. Wu, Y. W. Zhang, X. M. Xi, Y. L. Yin. Correction learning for medical image segmentation. IEEE Access, vol. 7, pp. 143597–143607, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2944849.

    Article  Google Scholar 

  13. S. A. Taghanaki, K. Abhishek, J. P. Cohen, J. Cohen-Adad, G. Hamarneh. Deep semantic segmentation of natural and medical images: A review. Artificial Intelligence Review, vol. 54, no. 1, pp. 137–178, 2021. DOI: https://doi.org/10.1007/s10462-020-09854-1.

    Article  Google Scholar 

  14. S. Ghosh, N. Das, I. Das, U. Maulik. Understanding deep learning techniques for image segmentation. ACM Computing Surveys, vol. 52, no. 4, Article number 73, 2019.

    Google Scholar 

  15. X. M. Li, H. Chen, X. J. Qi, Q. Dou, C. W. Fu, P. A. Heng. H-DenseUNet: Hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Transactions on Medical Imaging, vol. 37, no. 12, pp. 2663–2674, 2018. DOI: https://doi.org/10.1109/TMI.2018.2845918.

    Article  Google Scholar 

  16. Z. Z. Yang, L. Zhang, M. Zhang, J. Feng, Z. Wu, F. G. Ren, Y. Lv. Pancreas segmentation in abdominal CT scans using inter-/intra-slice contextual information with a cascade neural network. In Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, Berlin, Germany, pp. 5937–5940, 2019. DOI: https://doi.org/10.1109/EMBC.2019.8856774.

    Google Scholar 

  17. O. Gloger, R. Bülow, K. Tünnies, H. Völzke. Automatic gallbladder segmentation using combined 2D and 3D shape features to perform volumetric analysis in native and secretin — enhanced MRCP sequences. Magnetic Resonance Materials in Physics, Biology and Medicine, vol. 31, no. 3, pp. 383–397, 2018. DOI: https://doi.org/10.1007/s10334-017-0664-6.

    Article  Google Scholar 

  18. Y. K. Huo, J. Q. Liu, Z. B. Xu, R. L. Harrigan, A. Assad, R. G. Abramson, B. A. Landman. Robust multicontrast MRI spleen segmentation for splenomegaly using multi-atlas segmentation. IEEE Transactions on Biomedical Engineering, vol. 65, no. 2, pp. 336–343, 2018. DOI: https://doi.org/10.1109/TBME.2017.2764752.

    Article  Google Scholar 

  19. Y. Wang, Y. Y. Zhou, W. Shen, S. Park, E. K. Fishman, A. L. Yuille. Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. Medical Image Analysis, vol. 55, pp. 88–102, 2019. DOI: https://doi.org/10.1016/j.media.2019.04.005.

    Article  Google Scholar 

  20. E. Gibson, F. Giganti, Y. P. Hu, E. Bonmati, S. Bandula, K. Gurusamy, B. Davidson, S. P. Pereira, M. J. Clarkson, D. C. Barratt. Automatic multi-organ segmentation on abdominal CT with dense V-Networks. IEEE Transactions on Medical Imaging, vol. 37, no. 8, pp. 1822–1834, 2018. DOI: https://doi.org/10.1109/TMI.2018.2806309.

    Article  Google Scholar 

  21. S. Q. Chen, X. Zhong, S. Dorn, N. Ravikumar, Q. H. Tao, X. L. Huang, M. Lell, M. Kachelriess, A. Maier. Improving generalization capability of multi-organ segmentation models using dual-energy CT. IEEE Transactions on Radiation and Plasma Medical Sciences, to be published. DOI: https://doi.org/10.1109/TRPMS.2021.3055199.

  22. K. L. Román, M. Inmaculada García Ocaña, N. L. Urzelai, M. Ángel González Ballester, I. M. Oliver. Medical image segmentation using deep learning. In Deep Learning in Healthcare: Paradigms and Applications, Springer, Cham, Germany, pp. 17–31, 2020. DOI: https://doi.org/10.1007/978-3-030-32606-7_2.

    Chapter  Google Scholar 

  23. S. S. Chouhan, A. Kaul, U. P. Singh. Image segmentation using computational intelligence techniques: Review. Archives of Computational Methods in Engineering, vol. 26, no. 3, pp. 533–596, 2019. DOI: https://doi.org/10.1007/s11831-018-9257-4.

    Article  MathSciNet  Google Scholar 

  24. G. T. Wang, W. Q. Li, M. Aertsen, J. Deprest, S. Ourselin, T. Vercauteren. Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing, vol. 338, pp. 34–45, 2019. DOI: https://doi.org/10.1016/j.neucom.2019.01.103.

    Article  Google Scholar 

  25. H. Seo, M. B. Khuzani, V. Vasudevan, C. Huang, H. Y. Ren, R. X. Xiao, X. Jia, L. Xing. Machine learning techniques for biomedical image segmentation: An overview of technical aspects and introduction to state-of-art applications. Medical Physics, vol. 47, no. 5, pp. e148–e167, 2020.

    Article  Google Scholar 

  26. A. Chebli, A. Djebbar, H. F. Marouani. Semi-supervised learning for medical application: A survey. In Proceedings of International Conference on Applied Smart Systems, IEEE, Medea, Algeria, pp. 24–25, 2018. DOI: https://doi.org/10.1109/ICASS.2018.8651980.

    Google Scholar 

  27. F. Kulwa, C. Li, X. Zhao, B. C. Cai, N. Xu, S. L. Qi, S. Chen, Y. Y. Teng. A state-of-the-art survey for microorganism image segmentation methods and future potential. IEEE Access, vol. 7, pp. 100243–100269, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2930111.

    Article  Google Scholar 

  28. I. Aganj, M. G. Harisinghani, R. Weissleder, B. Fischl. Unsupervised medical image segmentation based on the local center of mass. Scientific Reports, vol. 8, no. 1, Article number 13012, 2018. DOI: https://doi.org/10.1038/s41598-018-31333-5.

    Google Scholar 

  29. M. Borga, T. Andersson, O. D. Leinhard. Semi-supervised learning of anatomical manifolds for atlas-based segmentation of medical images. In Proceedings of the 23rd International Conference on Pattern Recognition, IEEE, Cancun, Mexico, pp. 3146–3149, 2016. DOI: https://doi.org/10.1109/ICPR.2016.7900118.

    Google Scholar 

  30. X. Yao, Y. Q. Song, Z. Liu. Advances on pancreas segmentation: A review. Multimedia Tools and Applications, vol. 79, pp. 6799–6821, 2019.

    Article  Google Scholar 

  31. H. R. Torres, S. Queirós, P. Morais, B. Oliveira, J. C. Fonseca, J. L. Vilaça. Kidney segmentation in ultrasound, magnetic resonance and computed tomography images: A systematic review. Computer Methods and Programs in Biomedicine, vol. 157, pp. 49–67, 2018. DOI: https://doi.org/10.1016/j.cmpb.2018.01.014.

    Article  Google Scholar 

  32. A. Gotra, L. Sivakumaran, G. Chartrand, K. N. Vu, F. Vandenbroucke-Menu, C. Kauffmann, S. Kadoury, B. Gallix, J. A. De Guise, A. Tang. Liver segmentation: Indications, techniques and future directions. Insights into Imaging, vol. 8, no. 4, pp. 377–392, 2017. DOI: https://doi.org/10.1007/s13244-017-0558-1.

    Article  Google Scholar 

  33. M. Moghbel, S. Mashohor, R. Mahmud, M. I. B. Saripan. Review of liver segmentation and computer assisted detection/diagnosis methods in computed tomography. Artificial Intelligence Review, vol. 50, no. 4, pp. 497–537, 2018. DOI: https://doi.org/10.1007/s10462-017-9550-x.

    Article  Google Scholar 

  34. H. Kumar, S. V. Desouza, M. S. Petrov. Automated pancreas segmentation from computed tomography and magnetic resonance images: A systematic review. Computer Methods and Programs in Biomedicine, vol. 178, pp. 319–328, 2019. DOI: https://doi.org/10.1016/j.cmpb.2019.07.002.

    Article  Google Scholar 

  35. R. M. Summers. Progress in fully automated abdominal CT interpretation. American Journal of Roentgenology, vol. 207, no. 1, pp. 67–79, 2016. DOI: https://doi.org/10.2214/AJR.15.15996.

    Article  Google Scholar 

  36. A. Rehman, F. G. Khan. A deep learning based review on abdominal images. Multimedia Tools and Applications, vol. 80, no. 20, pp. 30321–30352, 2021. DOI: https://doi.org/10.1007/S11042-020-09592-0.

    Article  Google Scholar 

  37. F. M. Meng, L. L. Guo, Q. B. Wu, H. L. Li. A new deep segmentation quality assessment network for refining bounding box based segmentation. IEEE Access, vol. 7, pp. 59514–59523, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2915121.

    Article  Google Scholar 

  38. Z. Jiang, C. Xu, X. H. Tu, T. Li, N. Gao. A Co-segmentation method for image pairs based on maximum common subgraph and GrabCut. In Proceedings of the 2nd International Conference on Advances in Image Processing, ACM, Chengdu, China, pp. 39–43, 2018. DOI: https://doi.org/10.1145/3239576.3239590.

    Chapter  Google Scholar 

  39. L. B. Yang, L. R. Mansaray, J. F. Huang, L. M. Wang. Optimal segmentation scale parameter, feature subset and classification algorithm for geographic object-based crop recognition using multisource satellite imagery. Remote Sensing, vol. 11, no. 5, Article number 514, 2019. DOI: https://doi.org/10.3390/rs11050514.

    Google Scholar 

  40. A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Riedmiller, T. Brox. Discriminative unsupervised feature learning with exemplar convolutional neural networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 9, pp. 1734–1747, 2016. DOI: https://doi.org/10.1109/TPAMI.2015.2496141.

    Article  Google Scholar 

  41. S. Li, G. K. F. Tso, K. J. He. Bottleneck feature supervised U-Net for pixel-wise liver and tumor segmentation. Expert Systems with Applications, vol. 145, Article number 113131, 2020. DOI: https://doi.org/10.1016/j.eswa.2019.113131.

  42. Y. Deng, Y. Sun, Y. P. Zhu, Y. Xu, Q. X. Yang, S. Zhang, Z. Y. Wang, J. R. Sun, W. L. Zhao, X. B. Zhou, K. H. Yuan. A new framework to reduce doctor’s workload for medical image annotation. IEEE Access, vol. 7, pp. 107097–107104, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2917932.

    Article  Google Scholar 

  43. C. Y. Li, X. Y. Wang, S. Eberl, M. Fulham, Y. Yin, D. D. Feng. Supervised variational model with statistical inference and its application in medical image segmentation. IEEE Transactions on Biomedical Engineering, vol. 62, no. 1, pp. 196–207, 2015. DOI: https://doi.org/10.1109/TBME.2014.2344660.

    Article  Google Scholar 

  44. E. Kozegar, M. Soryani, H. Behnam, M. Salamati, T. Tan. Mass segmentation in automated 3-D breast ultrasound using adaptive region growing and supervised edge-based deformable model. IEEE Transactions on Medical Imaging, vol. 37, no. 4, pp. 918–928, 2018. DOI: https://doi.org/10.1109/TMI.2017.2787685.

    Article  Google Scholar 

  45. M. Xian, Y. T. Zhang, H. D. Cheng, F. Xu, B. Y. Zhang, J. Ding. R. Automatic breast ultrasound image segmentation: A survey. Pattern Recognition, vol. 79, pp. 340–355, 2018. DOI: https://doi.org/10.1016/j.patcog.2018.02.012.

    Article  Google Scholar 

  46. V. Cheplygina, M. de Bruijne, J. P. W. Pluim. Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Medical Image Analysis, vol. 54, pp. 280–296, 2019. DOI: https://doi.org/10.1016/j.media.2019.03.009.

    Article  Google Scholar 

  47. Z. Y. Shi, Y. X. Yang, T. M. Hospedales, T. Xiang. Weakly-supervised image annotation and segmentation with objects and attributes. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2525–2538, 2017. DOI: https://doi.org/10.1109/TPAMI.2016.2645157.

    Article  Google Scholar 

  48. J. Enguehard, P. O’Halloran, A. Gholipour. Semi-supervised learning with deep embedded clustering for image classification and segmentation. IEEE Access, vol. 7, pp. 11093–11104, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2891970.

    Article  Google Scholar 

  49. Q. Chang, Z. N. Yan, Y. X. Lou, L. Axel, D. N. Metaxas. Soft-Label guided semi-supervised learning for Bi-ventricle segmentation in cardiac cine MRI. In Proceedings of the 17th IEEE International Symposium on Biomedical Imaging, IEEE, Iowa City, USA, pp. 1752–1755, 2020. DOI: https://doi.org/10.1109/ISBI45749.2020.9098546.

    Google Scholar 

  50. B. Oliveira, S. Queirós, P. Morais, H. R. Torres, J. Gomes-Fonseca, J. C. Fonseca, J. L. Vilaça. A novel multi-atlas strategy with dense deformation field reconstruction for abdominal and thoracic multi-organ segmentation from computed tomography. Medical Image Analysis, vol. 45, pp. 108–120, 2018. DOI: https://doi.org/10.1016/j.media.2018.02.001.

    Article  Google Scholar 

  51. Y. Y. Zhou, Y. Wang, P. Tang, S. Bai, W. Shen, E. Fishman, A. Yuille. Semi-supervised 3D abdominal multi-organ segmentation via deep multi-planar Co-Training. In Proceedings of IEEE Winter Conference on Applications of Computer Vision, IEEE, Waikoloa, USA, pp. 121–140, 2019. DOI: https://doi.org/10.1109/WACV.2019.00020.

    Google Scholar 

  52. T. W. Utomo, A. I. Cahyadi, I. Ardiyanto. Suction-based grasp point estimation in cluttered environment for robotic manipulator using deep learning-based affordance map. International Journal of Automation and Computing, vol. 18, no. 2, pp. 277–287, 2021. DOI: https://doi.org/10.1007/s11633-020-1260-1.

    Article  Google Scholar 

  53. J. H. Tao, J. Huang, Y. Li, Z. Lian, M. Y. Niu. Semi-supervised ladder networks for speech emotion recognition. International Journal of Automation and Computing, vol. 16, no. 4, pp. 437–448, 2019. DOI: https://doi.org/10.1007/s11633-019-1175-x.

    Article  Google Scholar 

  54. Z. H. Zhou. A brief introduction to weakly supervised learning. National Science Review, vol. 5, no. 1, pp. 44–53, 2018. DOI: https://doi.org/10.1093/nsr/nwx106.

    Article  Google Scholar 

  55. K. Y. Liu, X. B. Yang, H. L. Yu, J. S. Mi, P. X. Wang, X. J. Chen. Rough set based semi-supervised feature selection via ensemble selector. Knowledge-based Systems, vol. 165, pp. 282–296, 2019. DOI: https://doi.org/10.1016/j.knosys.2018.11.034.

    Article  Google Scholar 

  56. Y. W. Chong, Y. Ding, Q. Yan, S. M. Pan. Graph-based semi-supervised learning: A review. Neurocomputing, vol. 480, pp. 216–230, 2020.

    Article  Google Scholar 

  57. A. Zhao, G. Balakrishnan, F. Durand, J. V. Guttag, A. V. Dalca. Data augmentation using learned transformations for one-shot medical image segmentation. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 8535–8545, 2019. DOI: https://doi.org/10.1109/CVPR.2019.00874.

    Google Scholar 

  58. A. Meyer, S. Ghosh, D. Schindele, M. Schostak, S. Stober, C. Hansen, M. Rak. Uncertainty-aware temporal self-learning (UATS): Semi-supervised learning for segmentation of prostate zones and beyond. Artificial Intelligence in Medicine, vol. 116, Article number 102073, 2021. DOI: https://doi.org/10.1016/j.artmed.2021.102073.

  59. B. Gu, X. T. Yuan, S. C. Chen, H. Huang. New incremental learning algorithm for semi-supervised support vector machine. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, ACM, London, UK, pp. 1475–1484, 2018. DOI: https://doi.org/10.1145/3219819.3220092.

    Chapter  Google Scholar 

  60. S. F. Ding, Z. B. Zhu, X. K. Zhang. An overview on semi-supervised support vector machine. Neural Computing and Applications, vol. 28, no. 5, pp. 969–978, 2017. DOI: https://doi.org/10.1007/s00521-015-2113-7.

    Article  Google Scholar 

  61. S. Yagasaki, N. Koizumi, Y. Nishiyama, R. Kondo, T. Imaizumi, N. Matsumoto, M. Ogawa, K. Numata. Estimating 3-dimensional liver motion using deep learning and 2-dimensional ultrasound images. International Journal of Computer Assisted Radiology and Surgery, vol. 15, no. 12, pp. 1989–1995, 2020. DOI: https://doi.org/10.1007/s11548-020-02265-1.

    Article  Google Scholar 

  62. P. H. Conze, V. Noblet, F. Rousseau, F. Heitz, R. Memeo, P. Pessaux. Random forests on hierarchical multi-scale supervoxels for liver tumor segmentation in dynamic contrast-enhanced CT scans. In Proceedings of the 13th IEEE International Symposium on Biomedical Imaging, IEEE, Prague, Czech Republic, pp. 416–419, 2016. DOI: https://doi.org/10.1109/ISBI.2016.7493296.

    Google Scholar 

  63. M. Chung, J. Lee, M. Lee, J. Lee, Y. G. Shin. Deeply self-supervised contour embedded neural network applied to liver segmentation. Computer Methods and Programs in Biomedicine, vol. 192, Article number 105447, 2020. DOI: https://doi.org/10.1016/j.cmpb.2020.105447.

  64. M. F. Xu, Y. Wang, Y. Chi, X. S. Hua. Training liver vessel segmentation deep neural networks on noisy labels from contrast CT imaging. In Proceedings of the 17th IEEE International Symposium on Biomedical Imaging, IEEE, Iowa City, USA, pp. 1552–1555, 2020. DOI: https://doi.org/10.1109/ISBI45749.2020.9098509.

    Google Scholar 

  65. R. M. Devi, V. Seenivasagam. Automatic segmentation and classification of liver tumor from CT image using feature difference and SVM based classifier-soft computing technique. Soft Computing, vol. 24, no. 24, pp. 18591–18598, 2020. DOI: https://doi.org/10.1007/s00500-020-05094-1.

    Article  Google Scholar 

  66. H. Seo, C. Huang, M. Bassenne, R. X. Xiao, L. Xing. Modified U-Net (mU-Net) with incorporation of object-dependent high level features for improved liver and liver-tumor segmentation in CT images. IEEE Transactions on Medical Imaging, vol. 39, no. 5, pp. 1316–1325, 2020. DOI: https://doi.org/10.1109/TMI.2019.2948320.

    Article  Google Scholar 

  67. X. Fang, S. Xu, B. J. Wood, P. K. Yan. Deep learning-based liver segmentation for fusion-guided intervention. International Journal of Computer Assisted Radiology and Surgery, vol. 15, no. 6, pp. 963–972, 2020. DOI: https://doi.org/10.1007/s11548-020-02147-6.

    Article  Google Scholar 

  68. X. K. Tang, E. Jafargholi Rangraz, W. Coudyzer, J. Bertels, D. Robben, G. Schramm, W. Deckers, G. Maleux, K. Baete, C. Verslype, M. J. Gooding, C. M. Deroose, J. Nuyts. Whole liver segmentation based on deep learning and manual adjustment for clinical use in SIRT. European Journal of Nuclear Medicine and Molecular Imaging, vol. 47, no. 12, pp. 2742–2752, 2020. DOI: https://doi.org/10.1007/s00259-020-04800-3.

    Article  Google Scholar 

  69. Y. S. Ng, Y. Xi, Y. X. Qian, L. Ananthakrishnan, T. C. Soesbe, M. Lewis, R. Lenkinski, J. R. Fielding. Use of spectral detector computed tomography to improve liver segmentation and volumetry. Journal of Computer Assisted Tomography, vol. 44, no. 2, pp. 197–203, 2020. DOI: https://doi.org/10.1097/RCT.0000000000000987.

    Article  Google Scholar 

  70. S. Almotairi, G. Kareem, M. Aouf, B. Almutairi, M. A. M. Salem. Liver tumor segmentation in CT scans using modified segnet. Sensors, vol. 20, no. 5, Article number 1516, 2020. DOI: https://doi.org/10.3390/s20051516.

    Google Scholar 

  71. G. M. Cunha, K. A. Hasenstab, A. Higaki, K. Wang, T. Delgado, R. L. Brunsing, A. Schlein, A. Schwartzman, A. Hsiao, C. B. Sirlin, K. J. Fowler. Convolutional neural network-automated hepatobiliary phase adequacy evaluation may optimize examination time. European Journal of Radiology, vol. 124, Article number 108837, 2020. DOI: https://doi.org/10.1016/j.ejrad.2020.108837.

  72. A. A. Albishri, S. J. H. Shah, Y. Lee. CU-Net: Cascaded U-Net model for automated liver and lesion segmentation and summarization. In Proceedings of IEEE International Conference on Bioinformatics and Biomedicine, IEEE, San Diego, USA, pp. 1416–1423, 2019. DOI: https://doi.org/10.1109/BIBM47256.2019.8983266.

    Google Scholar 

  73. Y. C. Wu, Q. Zhou, H. J. Hu, G. H. Rong, Y. W. Li, S. Y. Wang. Hepatic lesion segmentation by combining plain and contrast-enhanced CT images with modality weighted U-Net. In Proceedings of IEEE International Conference on Image Processing, IEEE, Taipei, China, pp. 255–259, 2019. DOI: https://doi.org/10.1109/ICIP.2019.8802942.

    Google Scholar 

  74. I. Aganj, B. Fischl. Expected label value computation for atlas-based image segmentation. In Proceedings of the 16th IEEE International Symposium on Biomedical Imaging, IEEE, Venice, Italy, pp. 334–338, 2019. DOI: https://doi.org/10.1109/ISBI.2019.8759484.

    Google Scholar 

  75. M. J. A. Jansen, H. J. Kuijf, J. P. W. Pluim. Optimal input configuration of dynamic contrast enhanced MRI in convolutional neural networks for liver segmentation. In Proceedings of SPIE 10949, Medical Imaging 2019, SPIE, San Diego, USA, Article number 109491V, 2019. DOI: https://doi.org/10.1117/12.2506770.

    Google Scholar 

  76. T. Y. Su, W. T. Yang, T. C. Cheng, Y. F. He, C. J. Yang, Y. H. Fang. Computer-aided liver cirrhosis diagnosis via automatic liver segmentation and machine learning algorithm. In Proceedings of SPIE 11050, International Forum on Medical Imaging in Asia 2019, SPIE, Singapore, Article number 1105011, 2019. DOI: https://doi.org/10.1117/12.2521631.

    Google Scholar 

  77. E. Dura, J. Domingo, E. Göçeri, L. Martí-Bonmatí. A method for liver segmentation in perfusion MR images using probabilistic atlases and viscous reconstruction. Pattern Analysis and Applications, vol. 21, no. 4, pp. 1083–1095, 2018. DOI: https://doi.org/10.1007/s10044-017-0666-z.

    Article  MathSciNet  Google Scholar 

  78. W. Tang, D. S. Zou, S. Yang, J. Shi. DSL: Automatic liver segmentation with faster R-CNN and deeplab. In Proceedings of the 27th International Conference on Artificial Neural Networks and Machine Learning, Springer, Rhodes, Greece, pp. 137–147, 2018. DOI: https://doi.org/10.1007/978-3-030-01421-6_14.

    Google Scholar 

  79. Q. Dou, L. Q. Yu, H. Chen, Y. M. Jin, X. Yang, J. Qin, P. A. Heng. 3D deeply supervised network for automated segmentation of volumetric medical images. Medical Image Analysis, vol. 41, pp. 40–54, 2017. DOI: https://doi.org/10.1016/j.media.2017.05.001.

    Article  Google Scholar 

  80. A. Ben-Cohen, I. Diamant, E. Klang, M. Amitai, H. Greenspan. Fully convolutional network for liver segmentation and lesions detection. In Proceedings of the 1st International Workshop on Deep Learning and Data Labeling for Medical Applications, Springer, Athens, Greece, pp. 77–85, 2016. DOI: https://doi.org/10.1007/978-3-319-46976-8_9.

    Chapter  Google Scholar 

  81. B. C. Anil, P. Dayananda. Automatic liver tumor segmentation based on multi-level deep convolutional networks and fractal residual network. IETE Journal of Research, to be published. DOI: https://doi.org/10.1080/03772063.2021.1878066.

  82. N. Alalwan, A. Abozeid, A. A. ElHabshy, A. Alzahrani. Efficient 3D deep learning model for medical image semantic segmentation. Alexandria Engineering Journal, vol. 60, no. 1, pp. 1231–1239, 2021. DOI: https://doi.org/10.1016/j.aej.2020.10.046.

    Article  Google Scholar 

  83. L. B. da Cruz, J. D. L. Araújo, J. L. Ferreira, J. O. B. Diniz, A. C. Silva, J. D. S. De Almeida, A. C. De Paiva, M. Gattass. Kidney segmentation from computed tomography images using deep neural network. Computers in Biology and Medicine, vol. 123, pp. 103906, 2020. DOI: https://doi.org/10.1016/J.COMPBIOMED.2020.103906.

    Article  Google Scholar 

  84. C. Jin, F. Shi, D. H. Xiang, X. Q. Jiang, B. Zhang, X. M. Wang, W. F. Zhu, E. T. Gao, X. J. Chen. 3D fast automatic segmentation of kidney based on modified AAM and random forest. IEEE Transactions on Medical Imaging, vol. 35, no. 6, pp. 1395–1407, 2016. DOI: https://doi.org/10.1109/TMI.2015.2512606.

    Article  Google Scholar 

  85. T. Pan, G. Y. Yang, C. X. Wang, Z. W. Lu, Z. W. Zhou, Y. Y. Kong, L. J. Tang, X. M. Zhu, J. L. Dillenseger, H. Z. Shu, J. L. Coatrieux. A Multi-task convolutional neural network for renal tumor segmentation and classification using multi-phasic CT images. In Proceedings of IEEE International Conference on Image Processing, IEEE, Taipei, China, pp. 80–813, 2019. DOI: https://doi.org/10.1109/ICIP.2019.8802924.

    Google Scholar 

  86. Z. Fatemeh, S. Nicola, K. Satheesh, U. Eranga. Ensemble U-net-based method for fully automated detection and segmentation of renal masses on computed tomography images. Medical Physics, vol. 47, no. 9, pp. 4032–4044, 2020. DOI: https://doi.org/10.1002/mp.14193.

    Article  Google Scholar 

  87. S. Yin, Q. M. Peng, H. M. Li, Z. Q. Zhang, X. G. You, K. Fischer, S. L. Furth, G. E. Tasian, Y. Fan. Automatic kidney segmentation in ultrasound images using subsequent boundary distance regression and pixelwise classification networks. Medical Image Analysis, vol. 60, Article number 101602, 2020. DOI: https://doi.org/10.1016/j.media.2019.101602.

  88. J. Park, S. Bae, S. Seo, S. Park, J. I. Bang, J. H. Han, W. W. Lee, J. S. Lee. Measurement of glomerular filtration rate using quantitative SPECT/CT and deep-learning-based kidney segmentation. Scientific Reports, vol. 9, no. 1, Article number 4223, 2019. DOI: https://doi.org/10.1038/s41598-019-40710-7.

    Google Scholar 

  89. H. Abdeltawab, M. Shehatal, A. Shalaby, S. Mesbah, M. El-Baz, M. Ghazal, Y. Alkhali, M. Abouel-Ghar, A. C. Dwyer, M. El-Melegy, A. El-Baz. A new 3D CNN-based CAD system for early detection of acute renal transplant rejection. In Proceedings of the 24th International Conference on Pattern Recognition, IEEE, Beijing, China, pp. 3898–3903, 2018. DOI: https://doi.org/10.1109/ICPR.2018.8545713.

    Google Scholar 

  90. M. Haghighi, S. K. Warfield, S. Kurugol. Automatic renal segmentation in DCE-MRI using convolutional neural networks. In Proceedings of the 15th IEEE International Symposium on Biomedical Imaging, IEEE, Washington DC, USA, pp. 1534–1537, 2018. DOI: https://doi.org/10.1109/ISBI.2018.8363865.

    Google Scholar 

  91. H. Ravishankar, S. Thiruvenkadam, R. Venkataramani, V. Vaidya. Joint deep learning of foreground, background and shape for robust contextual segmentation. In Proceedings of the 25th International Conference on Information Processing in Medical Imaging, Springer, Boone, USA, pp. 622–632, 2017. DOI: https://doi.org/10.1007/978-3-319-59050-9_49.

    Chapter  Google Scholar 

  92. P. R. Tabrizi, A. Mansoor, J. J. Cerrolaza, J. Jago, M. G. Linguraru. Automatic kidney segmentation in 3D pediatric ultrasound images using deep neural networks and weighted fuzzy active shape model. In Proceedings of the 15th IEEE International Symposium on Biomedical Imaging, IEEE, Washington, USA, pp. 1170–1173, 2018. DOI: https://doi.org/10.1109/ISBI.2018.8363779.

    Google Scholar 

  93. F. Khalifa, A. Soliman, A. C. Dwyer, G. Gimel’Farb, A. El-Baz. A random forest-based framework for 3D kidney segmentation from dynamic contrast-enhanced CT images. In Proceedings of IEEE International Conference on Image Processing, IEEE, Phoenix, USA, pp. 3399–3403, 2016. DOI: https://doi.org/10.1109/ICIP.2016.7532990.

    Google Scholar 

  94. S. C. Pang, T. Ding, S. B. Qiao, F. Meng, S. Wang, P. B. Li, X. Wang. A novel YOLOv3-arch model for identifying cholelithiasis and classifying gallstones on CT images. PLoS One, vol. 14, no. 6, Article number e0217647, 2019. DOI: https://doi.org/10.1371/journal.pone.0217647.

    Google Scholar 

  95. J. Zhang, L. R. Zhu, L. W. Yao, X. W. Ding, D. Chen, H. L. Wu, Z. H. Lu, W. Zhou, L. H. Zhang, P. An, B. Xu, W. Tan, S. Hu, F. Cheng, H. G. Yu. Deep learning-based pancreas segmentation and station recognition system in EUS: Development and validation of a useful training tool (with video). Gastrointestinal Endoscopy, vol. 92, no. 4, pp. 874–885, 2020. DOI: https://doi.org/10.1016/j.gie.2020.04.071.

    Article  Google Scholar 

  96. M. Nishio, S. Noguchi, K. Fujimoto. Automatic pancreas segmentation using coarse-scaled 2D model of deep learning: Usefulness of data augmentation and deep U-net. Applied Sciences, vol. 10, no. 10, Article number 3360, 2020. DOI: https://doi.org/10.3390/app10103360.

    Google Scholar 

  97. H. Y. Zheng, Y. F. Chen, X. D. Yue, C. Ma, X. H. Liu, P. P. Yang, J. P. Lu. Deep pancreas segmentation with uncertain regions of shadowed sets. Magnetic Resonance Imaging, vol. 68, pp. 45–52, 2020. DOI: https://doi.org/10.1016/j.mri.2020.01.008.

    Article  Google Scholar 

  98. F. Y. Li, W. S. Li, Y. C. Shu, S. Qin, B. Xiao, Z. W. Zhan. Multiscale receptive field based on residual network for pancreas segmentation in CT images. Biomedical Signal Processing and Control, vol. 57, Article number 101828, 2020. DOI: https://doi.org/10.1016/j.bspc.2019.101828.

  99. Y. Zhang, J. Wu, S. M. Wang, Y. L. Liu, Y. F. Chen, E. X. Wu, X. Y. Tang. Liver guided pancreas segmentation. In Proceedings of the IEEE 17th International Symposium on Biomedical Imaging, IEEE, Iowa City, USA, pp. 1201–1204, 2020. DOI: https://doi.org/10.1109/ISBI45749.2020.9098388.

    Google Scholar 

  100. W. H. Yu, H. Chen, L. S. Wang. Dense attentional network for pancreas segmentation in abdominal CT scans. In Proceedings of the 2nd International Conference on Artificial Intelligence and Pattern Recognition, ACM, Beijing, China, pp. 83–87, 2019. DOI: https://doi.org/10.1145/3357254.3357259.

    Chapter  Google Scholar 

  101. W. Z. Wang, Q. Y. Song, R. W. Feng, T. T. Chen, J. T. Chen, D. Z. Chen, J. Wu. A fully 3D cascaded framework for pancreas segmentation. In Proceedings of the 17th IEEE International Symposium on Biomedical Imaging, IEEE, Iowa City, USA, pp. 207–211, 2020. DOI: https://doi.org/10.1109/ISBI45749.2020.9098473.

    Google Scholar 

  102. Y. Z. Man, Y. S. B. Huang, J. Y. Feng, X. Li, F. Wu. Deep Q learning driven CT pancreas segmentation with geometry-aware U-Net. IEEE Transactions on Medical Imaging, vol. 38, no. 8, pp. 1971–1980, 2019. DOI: https://doi.org/10.1109/TMI.2019.2911588.

    Article  Google Scholar 

  103. A. Farag, L. Lu, H. R. Roth, J. M. Liu, E. Turkbey, R. M. Summers. A bottom-up approach for pancreas segmentation using cascaded superpixels and (deep) image patch labeling. IEEE Transactions on Image Processing, vol. 26, no. 1, pp. 386–399, 2017. DOI: https://doi.org/10.1109/TIP.2016.2624198.

    Article  MathSciNet  MATH  Google Scholar 

  104. N. N. Zhao, N. Tong, D. Ruan, K. Sheng. Fully automated pancreas segmentation with two-stage 3D convolutional neural networks. In Proceedings of the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention, Springer, Shenzhen, China, pp. 201–209, 2019. DOI: https://doi.org/10.1007/978-3-030-32245-8_23.

    Google Scholar 

  105. M. P. Heinrich, M. Blendowski, O. Oktay. TernaryNet: Faster deep model inference without GPUs for medical 3D segmentation using sparse and binary convolutions. International Journal of Computer Assisted Radiology and Surgery, vol. 13, no. 9, pp. 1311–1320, 2018. DOI: https://doi.org/10.1007/s11548-018-1797-4.

    Article  Google Scholar 

  106. H. Moon, Y. K. Huo, R. G. Abramson, R. A. Peters, A. Assad, T. K. Moyo, M. R. Savona, B. A. Landman. Acceleration of spleen segmentation with end-to-end deep learning method and automated pipeline. Computers in Biology and Medicine, vol. 107, pp. 109–117, 2019. DOI: https://doi.org/10.1016/j.compbiomed.2019.01.018.

    Article  Google Scholar 

  107. H. Wang, G. T. Wang, Z. H. Xu, W. H. Lei, S. T. Zhang. High- and low-level feature enhancement for medical image segmentation. In Proceedings of the 10th International Workshop on Machine Learning in Medical Imaging, Springer, Shenzhen, China, pp. 611–619, 2019. DOI: https://doi.org/10.1007/978-3-030-32692-0_70.

    Chapter  Google Scholar 

  108. J. Q. Liu, Y. K. Huo, Z. B. Xu, A. Assad, R. G. Abramson, B. A. Landman. Multi-atlas spleen segmentation on CT using adaptive context learning. In Proceedings of SPIE 10133, Medical Imaging 2017, SPIE, Orlando, USA, Article number 1013309, 2017. DOI: https://doi.org/10.1117/12.2254437.

    Google Scholar 

  109. L. Zhang, J. M. Zhang, P. Y. Shen, G. M. Zhu, P. Li, X. Y. Lu, H. Zhang, S. A. Shah, M. Bennamoun. Block level skip connections across cascaded V-Net for multi-organ segmentation. IEEE Transactions on Medical Imaging, vol. 39, no. 9, pp. 2782–2793, 2020. DOI: https://doi.org/10.1109/TMI.2020.2975347.

    Article  Google Scholar 

  110. S. Park, L. C. Chu, E. K. Fishman, A. L. Yuille, B. Vogelstein, K. W. Kinzler, K. M. Horton, R. H. Hruban, E. S. Zinreich, D. Fadaei Fouladi, S. Shayesteh, J. Graves, S. Kawamoto. Annotated normal CT data of the abdomen for deep learning: Challenges and strategies for implementation. Diagnostic and Interventional Imaging, vol. 101, no. 1, pp. 35–44, 2020. DOI: https://doi.org/10.1016/j.diii.2019.05.008.

    Article  Google Scholar 

  111. Y. H. Chen, D. Ruan, J. Y. Xiao, L. X. Wang, B. Sun, R. Saouaf, W. S. Yang, D. B. Li, Z. Y. Fan. Fully automated multiorgan segmentation in abdominal magnetic resonance imaging with deep neural networks. Medical Physics, vol. 47, no. 10, pp. 4971–4982, 2020. DOI: https://doi.org/10.1002/mp.14429.

    Article  Google Scholar 

  112. X. Fang, P. K. Yan. Multi-organ segmentation over partially labeled datasets with multi-scale feature abstraction. IEEE Transactions on Medical Imaging, vol. 39, no. 11, pp. 3619–3629, 2020. DOI: https://doi.org/10.1109/TMI.2020.3001036.

    Article  Google Scholar 

  113. Y. Ahn, J. S. Yoon, S. S. Lee, H. I. Suk, J. H. Son, Y. S. Sung, Y. Lee, B. K. Kang, H. S. Kim. Deep learning algorithm for automated segmentation and volume measurement of the liver and spleen using portal venous phase computed tomography images. Korean Journal of Radiology, vol. 21, no. 8, pp. 987–997, 2020. DOI: https://doi.org/10.3348/kjr.2020.0237.

    Article  Google Scholar 

  114. M. P. Heinrich, O. Oktay, N. Bouteldja. OBELISK-Net: Fewer layers to solve 3D multi-organ segmentation with sparse deformable convolutions. Medical Image Analysis, vol. 54, pp. 1–9, 2019. DOI: https://doi.org/10.1016/j.media.2019.02.006.

    Article  Google Scholar 

  115. H. Kakeya, T. Okada, Y. Oshiro. 3D U-JAPA-Net: Mixture of convolutional networks for abdominal multi-organ CT segmentation. In Proceedings of the 21st International Conference on Medical Image Computing and Computer Assisted Intervention, Springer, Granada, Spain, pp. 352–360, 2018. DOI: https://doi.org/10.1007/978-3-030-00937-3_49.

    Google Scholar 

  116. R. G. Bisen, A. M. Rajrkar, R. R. Manthalkar. Segmentation, detection, and classification of liver tumors for designing a CAD system. In Proceedings of Conference on Computing in Engineering and Technology, Springer, Singapore, pp. 103–111, 2019. DOI: https://doi.org/10.1007/978-981-32-9515-5_10.

    Google Scholar 

  117. Y. X. Chen, S. Y. Li, S. Yang, W. Y. Luo. Liver Segmentation in CT Images with Adversarial Learning. In Proceedings of the 15th International Conference on Intelligent Computing Theories and Application, Springer, Nanchang, China, pp. 470–480, 2019. DOI: https://doi.org/10.1007/978-3-030-26763-6_45.

    Chapter  Google Scholar 

  118. S. K. Asrani, H. Devarbhavi, J. Eaton, P. S. Kamath. Burden of liver diseases in the world. Journal of Hepatology, vol. 70, no. 1, pp. 151–171, 2019. DOI: https://doi.org/10.1016/j.jhep.2018.09.014.

    Article  Google Scholar 

  119. Z. Liu, Y. Q. Song, V. S. Sheng, L. M. Wang, R. Jiang, X. L. Zhang, D. Q. Yuan. Liver CT sequence segmentation based with improved U-Net and graph cut. Expert Systems with Applications, vol. 126, pp. 54–63, 2019. DOI: https://doi.org/10.1016/j.eswa.2019.01.055.

    Article  Google Scholar 

  120. Y. Zhang, J. Wu, B. X. Jiang, D. C. Ji, Y. F. Chen, E. X. Wu, X. Y. Tang. Deep learning and unsupervised fuzzy C-means based level-set segmentation for liver tumor. In Proceedings of the 17th IEEE International Symposium on Biomedical Imaging, IEEE, Iowa City, USA, pp. 1193–1196, 2020. DOI: https://doi.org/10.1109/ISBI45749.2020.9098701.

    Google Scholar 

  121. R. Dey, Y. Hong. Hybrid cascaded neural network for liver lesion segmentation. In Proceedings of the 17th IEEE International Symposium on Biomedical Imaging, IEEE, Iowa City, USA, pp. 1173–1177, 2020. DOI: https://doi.org/10.1109/ISBI45749.2020.9098656.

    Google Scholar 

  122. Z. Farooq, A. H. Behzadi, J. D. Blumenfeld, Y. Z. Zhao, M. R. Prince. Comparison of MRI segmentation techniques for measuring liver cyst volumes in autosomal dominant polycystic kidney disease. Clinical Imaging, vol. 47, pp. 41–46, 2018. DOI: https://doi.org/10.1016/j.clinimag.2017.07.004.

    Article  Google Scholar 

  123. X. S. Hou, C. M. Xie, F. Y. Li, J. P. Wang, C. F. Lv, G. T. Xie, Y. Nan. A triple-stage self-guided network for kidney tumor segmentation. In Proceedings of the 17th IEEE International Symposium on Biomedical Imaging, IEEE, Iowa City, USA, pp. 341–344, 2020. DOI: https://doi.org/10.1109/ISBI45749.2020.9098609.

    Google Scholar 

  124. M. Tubay, S. Zelasko. Multimodality imaging of the gallbladder: Spectrum of pathology and associated imaging findings. Current Radiology Reports, vol. 4, no. 5, Article number 21, 2016. DOI: https://doi.org/10.1007/s40134-016-0148-x.

    Google Scholar 

  125. V. Muneeswaran, M. P. Rajasekaran. Automatic segmentation of gallbladder using bio-inspired algorithm based on a spider web construction model. The Journal of Supercomputing, vol. 75, no. 6, pp. 3158–3183, 2019. DOI: https://doi.org/10.1007/s11227-017-2230-4.

    Article  Google Scholar 

  126. C. Serra, F. Pallotti, M. Bortolotti, C. Caputo, C. Felicani, R. D. Giorgio, G. Barbara, E. Nardi, A. M. M. Labate. A new reliable method for evaluating gallbladder dynamics: The 3-dimensional sonographic examination. Journal of Ultrasound in Medicine, vol. 35, no. 2, pp. 297–304, 2016. DOI: https://doi.org/10.7863/ultra.14.10033.

    Article  Google Scholar 

  127. G. V. Timokhov, E. A. Semenova. The decision support algorithm for a surgeon in preoperative planning of mini-laparotomy gallbladder surgery from an arbitrary incision site. In Proceedings of Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, IEEE, Yekaterinburg, Russia, pp. 74–77, 2019. DOI: https://doi.org/10.1109/USBEREIT.2019.8736587.

    Google Scholar 

  128. S. Tognarelli, M. Brancadoro, V. Dolosor, A. Menciassi. Soft tool for gallbladder retraction in minimally invasive surgery based on layer jamming. In Proceedings of the 7th IEEE International Conference on Biomedical Robotics and Biomechatronics, IEEE, Enschede, Netherlands, pp. 67–72, 2018. DOI: https://doi.org/10.1109/BIOROB.2018.8488152.

    Google Scholar 

  129. L. L. Cong, Z. Q. Cai, P. Guo, C. Chen, D. C. Liu, W. Z. Li, L. Wang, Y. L. Zhao, S. B. Si, Z. M. Geng. Decision of surgical approach for advanced gallbladder adenocarcinoma based on a Bayesian network. Journal of Surgical Oncology, vol. 116, no. 8, pp. 1123–1131, 2017. DOI: https://doi.org/10.1002/jso.24797.

    Article  Google Scholar 

  130. Z. Zhang, N. Li, H. Y. Gao, Z. Q. Cai, S. B. Si, Z. M. Geng. Preoperative analysis for clinical features of unsuspected gallbladder cancer based on random forest. In Proceedings of IEEE International Conference on Industrial Engineering and Engineering Management, IEEE, Bangkok, Thailand, pp. 1160–1164, 2018. DOI: https://doi.org/10.1109/IEEM.2018.8607352.

    Google Scholar 

  131. A. P. Wasnik, M. S. Davenport, R. K. Kaza, W. J. Weadock, A. Udager, N. Keshavarzi, B. Nan, K. E. Maturen. Diagnostic accuracy of MDCT in differentiating gallbladder cancer from acute and xanthogranulomatous cholecystitis. Clinical Imaging, vol. 50, pp. 223–228, 2018. DOI: https://doi.org/10.1016/j.clinimag.2018.04.010.

    Article  Google Scholar 

  132. B. J. Ha, S. Park. Classification of gallstones using Fourier-transform infrared spectroscopy and photography. Biomaterials Research, vol. 22, no. 1, Article number 18, 2018. DOI: https://doi.org/10.1186/s40824-018-0128-8.

    Google Scholar 

  133. S. Liu, Q. Liu, X. R. Yuan, R. Y. Hu, S. J. Liang, S. H. Feng, Y. H. Ai, Y. Zhang. Automatic pancreas segmentation via coarse location and ensemble learning. IEEE Access, vol. 8, pp. 2906–2914, 2020. DOI: https://doi.org/10.1109/ACCESS.2019.2961125.

    Article  Google Scholar 

  134. P. J. Hu, X. Li, Y. Tian, T. Y. Tang, T. S. Zhou, X. L. Bai, S. Q. Zhu, T. B. Liang, J. S. Li. Automatic pancreas segmentation in CT images with distance-based saliency-aware DenseASPP network. IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 5, pp. 1601–1611, 2021. DOI: https://doi.org/10.1109/JBHI.2020.3023462.

    Article  Google Scholar 

  135. I. Gutenko, K. Dmitriev, A. E. Kaufman, M. A. Barish. AnaFe: Visual analytics of image-derived temporal features - focusing on the spleen. IEEE Transactions on Visualization and Computer Graphics, vol. 23, no. 1, pp. 171–180, 2017. DOI: https://doi.org/10.1109/TVCG.2016.2598463.

    Article  Google Scholar 

  136. Y. K. Huo, Z. B. Xu, S. X. Bao, C. Bermudez, H. Moon, P. Parvathaneni, T. K. Moyo, M. R. Savona, A. Assad, R. G. Abramson, B. A. Landman. Splenomegaly segmentation on multi-modal MRI using deep convolutional networks. IEEE Transactions on Medical Imaging, vol. 38, no. 5, pp. 1185–1196, 2019. DOI: https://doi.org/10.1109/TMI.2018.2881110.

    Article  Google Scholar 

  137. A. Wood, S. M. R. Soroushmehr, N. Farzaneh, D. Fessell, K. R. Ward, J. Gryak, D. Kahrobaei, K. Na. Fully automated spleen localization and segmentation using machine learning and 3D active contours. In Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, Honolulu, USA, pp. 53–56, 2018. DOI: https://doi.org/10.1109/EMBC.2018.8512182.

    Google Scholar 

  138. T. Küstner, S. Müller, M. Fischer, J. Weiss, K. Nikolaou, F. Bamberg, B. Yang, F. Schick, S. Gatidis. Semantic organ segmentation in 3D whole-body MR images. In Proceedings of the 25th IEEE International Conference on Image Processing, IEEE, Athens, Greece, pp. 3498–3502, 2018. DOI: https://doi.org/10.1109/ICIP.2018.8451205.

    Google Scholar 

  139. H. Zheng, L. F. Lin, H. J. Hu, Q. W. Zhang, Q. Q. Chen, Y. Iwamoto, X. H. Han, Y. W. Chen, R. F. Tong, J. Wu. Semi-supervised segmentation of liver using adversarial learning with deep atlas prior. In Proceedings of the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention, Springer, Shenzhen, China, pp. 148–156, 2019. DOI: https://doi.org/10.1007/978-3-030-32226-7_17.

    Google Scholar 

  140. F. Lu, F. Wu, P. J. Hu, Z. Peng, D. X. Kong. Automatic 3D liver location and segmentation via convolutional neural network and graph cut. International Journal of Computer Assisted Radiology and Surgery, vol. 12, no. 2, pp. 171–182, 2017. DOI: https://doi.org/10.1007/s11548-016-1467-3.

    Article  Google Scholar 

  141. S. Sangewar, P. Daigavane, G. Somulu. A comparative study of k-means and graph cut method of liver segmentation. In Proceedings of the 3rd International Conference on Electrical, Computer, Electronics & Biomedical Engineering & 3rd International Conference on Business, Economics, and Environment Issues, Bangkok, Thailand, pp. 2540–2543, 2017.

    Google Scholar 

  142. W. W. Wu, Z. H. Zhou, S. C. Wu, Y. H. Zhang. Automatic liver segmentation on volumetric CT images using supervoxel-based graph cuts. Computational and Mathematical Methods in Medicine, vol. 2016, Article number 9093721, 2016.

  143. M. Liao, Y. Q. Zhao, X. Y. Liu, Y. Z. Zeng, B. J. Zou, X. F. Wang, F. Y. Shih. Automatic liver segmentation from abdominal CT volumes using graph cuts and border marching. Computer Methods and Programs in Biomedicine, vol. 143, pp. 1–12, 2017. DOI: https://doi.org/10.1016/j.cmpb.2017.02.015.

    Article  Google Scholar 

  144. Q. Huang, H. Ding, X. D. Wang, G. Z. Wang. Fully automatic liver segmentation in CT images using modified graph cuts and feature detection. Computers in Biology and Medicine, vol. 95, pp. 198–208, 2018. DOI: https://doi.org/10.1016/j.compbiomed.2018.02.012.

    Article  Google Scholar 

  145. C. L. Wang, H. R. Roth, T. Kitasaka, M. Oda, Y. Hayashi, Y. Yoshino, T. Yamamoto, N. Sassa, M. Goto, K. Mori. Precise estimation of renal vascular dominant regions using spatially aware fully convolutional networks, tensor-cut and Voronoi diagrams. Computerized Medical Imaging and Graphics, vol. 77, Article number 101642, 2019. DOI: https://doi.org/10.1016/j.compmedimag.2019.101642.

  146. U. Yoruk, B. A. Hargreaves, S. S. Vasanawala. Automatic renal segmentation for MR urography using 3D-GrabCut and random forests. Magnetic Resonance in Medicine, vol. 79, no. 3, pp. 1696–1707, 2018. DOI: https://doi.org/10.1002/mrm.26806.

    Article  Google Scholar 

  147. Q. Zheng, S. Warner, G. Tasian, Y. Fan. A dynamic graph cuts method with integrated multiple feature maps for segmenting kidneys in 2D ultrasound images. Academic Radiology, vol. 25, no. 9, pp. 1136–1145, 2018. DOI: https://doi.org/10.1016/j.acra.2018.01.004.

    Article  Google Scholar 

  148. Y. D. Xia, D. Yang, Z. D. Yu, F. Z. Liu, J. Z. Cai, L. Q. Yu, Z. T. Zhu, D. G. Xu, A. Yuille, H. Roth. Uncertainty-aware multi-view co-training for semi-supervised medical image segmentation and domain adaptation. Medical Image Analysis, vol. 65, pp. 101766, 2020. DOI: https://doi.org/10.1016/j.media.2020.101766.

    Article  Google Scholar 

  149. K. Chaitanya, N. Karani, C. F. Baumgartner, E. Erdil, A. Becker, O. Donati, E. Konukoglu. Semi-supervised task-driven data augmentation for medical image segmentation. Medical Image Analysis, vol. 68, pp. 101934, 2021. DOI: https://doi.org/10.1016/j.media.2020.101934.

    Article  Google Scholar 

  150. Y. D. Xia, F. Z. Liu, D. Yang, J. Z. Cai, L. Q. Yu, Z. T. Zhu, D. G. Xu, A. Yuille, H. Roth. 3D semi-supervised learning with uncertainty-aware multi-view Co-training. In Proceedings of IEEE Winter Conference on Applications of Computer Vision, IEEE, Snowmass, USA, pp. 3635–3644, 2020. DOI: https://doi.org/10.1109/WACV45572.2020.9093608.

    Google Scholar 

  151. R. D. Soberanis-Mukul, N. Navab, S. Albarqouni. Uncertainty-based graph convolutional networks for organ segmentation refinement. In Proceedings of International Conference on Medical Imaging with Deep Learning, Montréal, Canada, pp. 755–769, 2020.

    Google Scholar 

  152. Y. C. Tang, Y. K. Huo, Y. X. Xiong, H. Moon, A. Assad, T. K. Moyo, M. R. Savona, R. Abramson, B. A. Landman. Improving splenomegaly segmentation by learning from heterogeneous multi-source labels. In Proceedings of SPIE 10949, Medical Imaging 2019: Image Processing, SPIE, San Diego, USA, Article number 1094908, 2019. DOI: https://doi.org/10.1117/12.2512842.

    Google Scholar 

  153. R. Huang, Y. J. Zheng, Z. Q. Hu, S. T. Zhang, H. S. Li. Multi-organ segmentation via Co-training weight-averaged models from few-organ datasets. In Proceedings of the 23rd International Conference on Medical Image Computing and Computer Assisted Intervention, Springer, Lima, Peru, pp. 146–155, 2020. DOI: https://doi.org/10.1007/978-3-030-59719-1_15.

    Google Scholar 

  154. T. Takaoka, Y. Mochizuki, H. Ishikawa. Multiple-organ segmentation by graph cuts with supervoxel nodes. In Proceedings of the 15th IAPR International Conference on Machine Vision Applications, IEEE, Nagoya, Japan, pp. 424–427, 2017. DOI: https://doi.org/10.23919/MVA.2017.7986891.

    Google Scholar 

  155. R. Kéchichian, S. Valette, M. Desvignes. Automatic multiorgan segmentation via multiscale registration and graph cut. IEEE Transactions on Medical Imaging, vol. 37, no. 12, pp. 2739–2749, 2018. DOI: https://doi.org/10.1109/TMI.2018.2851780.

    Article  Google Scholar 

  156. A. Saito, S. Nawano, A. Shimizu. Fast approximation for joint optimization of segmentation, shape, and location priors, and its application in gallbladder segmentation. International Journal of Computer Assisted Radiology and Surgery, vol. 12, no. 5, pp. 743–756, 2017. DOI: https://doi.org/10.1007/s11548-017-1571-z.

    Article  Google Scholar 

  157. Y. K. Huo, J. Q. Liu, Z. B. Xu, R. L. Harrigan, A. Assad, R. G. Abramson, B. A. Landman. Multi-atlas segmentation enables robust multi-contrast MRI spleen segmentation for splenomegaly. In Proceedings of SPIE 10133, Medical Imaging 2017: Image Processing, SPIE, Orlando, USA, Article number 101330A, 2017. DOI: https://doi.org/10.1117/12.2254147.

    Google Scholar 

  158. H. Müller, D. Unay. Retrieval from and understanding of large-scale multi-modal medical datasets: A review. Transactions on Multimedia, vol. 19, no. 9, pp. 2093–2104, 2017. DOI: https://doi.org/10.1109/TMM.2017.2729400.

    Article  Google Scholar 

  159. N. Tajbakhsh, L. Jeyaseelan, Q. Li, J. N. Chiang, Z. H. Wu, X. W. Ding. Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation. Medical Image Analysis, vol. 63, no. 101693, 2020.

  160. Z. Q. Cai, P. Guo, S. Li, L. L. Cong, Z. M. Geng. Gallbladder diagnosis and importance analysis based on bayesian network. In Proceedings of the 23rd International Conference on Industrial Engineering and Engineering Management 2016: Theory and Application of Industrial Engineering, pp. 269–273, 2017. DOI: https://doi.org/10.2991/978-94-6239-255-7_48.

    Chapter  Google Scholar 

  161. N. Jain, V. Kumar. Liver ultrasound image segmentation using region-difference filters. Journal of Digital Imaging, vol. 30, no. 3, pp. 376–390, 2017. DOI: https://doi.org/10.1007/s10278-016-9934-5.

    Article  Google Scholar 

  162. C. F. Shi, Y. Z. Cheng, F. Liu, Y. D. Wang, J. Bai, S. Tamura. A hierarchical local region-based sparse shape composition for liver segmentation in CT scans. Pattern Recognition, vol. 50, pp. 88–106, 2016. DOI: https://doi.org/10.1016/j.patcog.2015.09.001.

    Article  Google Scholar 

  163. M. Liao, Y. Q. Zhao, W. Wang, Y. Z. Zeng, Q. Yang, F. Y. Shih, B. J. Zou. Efficient liver segmentation in CT images based on graph cuts and bottleneck detection. Physica Medica, vol. 32, no. 11, pp. 1383–1396, 2016. DOI: https://doi.org/10.1016/j.ejmp.2016.10.002.

    Article  Google Scholar 

  164. M. A. Azam, K. B. Khan, M. Aqeel, A. R. Chishti, M. N. Abbasi. Analysis of the MIDAS and OASIS biomedical databases for the application of multimodal image processing. In Proceedings of the 2nd International Conference on Intelligent Technologies and Applications, Springer, Bahawalpur, Pakistan, pp. 581–592, 2020. DOI: https://doi.org/10.1007/978-981-15-5232-8_50.

    Chapter  Google Scholar 

  165. A. Qayyum, A. Lalande, F. Meriaudeau. Automatic segmentation of tumors and affected organs in the abdomen using a 3D hybrid model for computed tomography imaging. Computers in Biology and Medicine, vol. 127, Article number 104097, 2020. DOI: https://doi.org/10.1016/j.compbiomed.2020.104097.

  166. A. L. Simpson, M. Antonelli, S. Bakas, M. Bilello, K. Farahani, B. van Ginneken, A. Kopp-Schneider, B. A. Landman, G. Litjens, B. Menze, O. Ronneberger, R. M. Summers, P. Bilic, P. F. Christ, R. K. G. Do, M. Gollub, J. Golia-Pernicka, S. H. Heckers, W. R. Jarnagin, M. K. McHugo, S. Napel, E. Vorontsov, L. Maier-Hein, M. J. Cardoso. A large annotated medical image dataset for the development and evaluation of segmentation algorithms. [Online], Available: http://arxiv.org/abs/1902.09063, 2019.

    Google Scholar 

  167. A. E. Kavur, N. S. Gezer, M. Baris, S. Aslan, P. H. Conze, V. Groza, D. D. Pham, S. Chatterjee, P. Ernst, S. Özkan, B. Baydar, D. Lachinov, S. Han, J. Pauli, F. Isensee, M. Perkonigg, R. Sathish, R. Rajan, D. Sheet, G. Dovletov, O. Speck, A. Nürnberger, K. H. Maier-Hein, G. B. Akar, G. Ünal, O. Dicle, M. A. Selver. CHAOS Challenge - Combined (CT-MR) healthy abdominal organ segmentation. Medical Image Analysis, vol. 69, Article number 101950, 2020.

  168. A. B. Spanier, L. Joskowicz. Automatic atlas-free multi-organ segmentation of contrast-enhanced CT scans. Cloud-Based Benchmarking of Medical Image Analysis, Springer, Cham, Germany, pp. 145–164, 2017. DOI: https://doi.org/10.1007/978-3-319-49644-3_9.

    Chapter  Google Scholar 

  169. F. Prior, K. Smith, A. Sharma, J. Kirby, L. Tarbox, K. Clark, W. Bennett, T. Nolan, J. Freymann. The public cancer radiology imaging collections of the Cancer Imaging Archive. Scientific Data, vol. 4, no. 1, Article number 170124, 2014.

    Google Scholar 

  170. N. Tajbakhsh, L. Jeyaseelan, Q. Li, J. N. Chiang, Z. H. Wu, X. W. Ding. Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation. Medical Image Analysis, vol. 63, Article number 101693, 2020. DOI: https://doi.org/10.1016/j.media.2020.101693.

  171. Y. Z. Zeng, Y. Q. Zhao, P. Tang, M. Liao, Y. X. Liang, S. H. Liao, B. J. Zou. Liver vessel segmentation and identification based on oriented flux symmetry and graph cuts. Computer Methods and Programs in Biomedicine, vol. 150, pp. 31–39, 2017. DOI: https://doi.org/10.1016/j.cmpb.2017.07.002.

    Article  Google Scholar 

  172. V. Verma, R. K. Aggarwal. A comparative analysis of similarity measures akin to the Jaccard index in collaborative recommendations: Empirical and theoretical perspective. Social Network Analysis and Mining, vol. 10, no. 1, Article number 43, 2020. DOI: https://doi.org/10.1007/s13278-020-00660-9.

    Google Scholar 

  173. I. Rizwan I Haque, J. Neubert. Deep learning approaches to biomedical image segmentation. Informatics in Medicine Unlocked, vol. 18, Article number 100297, 2020. DOI: https://doi.org/10.1016/j.imu.2020.100297.

  174. D. Dreizin, T. N. Chen, Y. Y. Liang, Y. Y. Zhou, F. Paes, Y. Wang, A. L. Yuille, P. Roth, K. Champ, G. Li, A. McLenithan, J. J. Morrison. Added value of deep learning-based liver parenchymal CT volumetry for predicting major arterial injury after blunt hepatic trauma: A decision tree analysis. Abdominal Radiology, vol. 46, no. 6, pp. 2556–2566, 2021. DOI: https://doi.org/10.1007/s00261-020-02892-x.

    Article  Google Scholar 

  175. T. L. Fan, G. L. Wang, X. Wang, Y. Li, H. R. Wang. MSN-Net: A multi-scale context nested U-Net for liver segmentation. Signal, Image and Video Processing, vol. 15, no. 6, pp. 1089–1097, 2021. DOI: https://doi.org/10.1007/s11760-020-01835-9.

    Article  Google Scholar 

  176. J. Z. Cai, L. Lu, Z. Z. Zhang, F. Y. Xing, L. Yang, Q. Yin. Pancreas segmentation in MRI using graph-based decision fusion on convolutional neural networks. In Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Athens, Greece, pp. 442–450, 2016. DOI: https://doi.org/10.1007/978-3-319-46723-8_51.

    Google Scholar 

  177. Y. Zhang, B. X. Jiang, J. Wu, D. C. Ji, Y. L. Liu, Y. F. Chen, E. X. Wu, X. Y. Tang. Deep learning initialized and gradient enhanced level-set based segmentation for liver tumor from CT images. IEEE Access, vol. 8, pp. 76056–76068, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.2988647.

    Article  Google Scholar 

  178. H. Y. Li, Z. X. Sun, Y. J. Wu, Y. C. Song. Semi-supervised point cloud segmentation using self-training with label confidence prediction. Neurocomputing, vol. 437, pp. 227–237, 2021. DOI: https://doi.org/10.1016/j.neucom.2021.01.091.

    Article  Google Scholar 

  179. T. M. Geethanjali, Minavathi. Review on recent methods for segmentation of liver using computed tomography and magnetic resonance imaging modalities. In Emerging Research in Electronics, Computer Science and Technology, Springer, Singapore, pp. 631–647, 2019. DOI: https://doi.org/10.1007/978-981-13-5802-9_56.

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 61772242, 61976106 and 61572239), the China Postdoctoral Science Foundation (No. 2017M611737), the Six Talent Peaks Project in Jiangsu Province (No. DZXX-122), and the Key Special Project of Health and Family Planning Science and Technology in Zhenjiang City (No. SHW2017019). The authors would like to thank the Radiologists of the Medical Imaging Department of Affiliated Hospital of Jiangsu University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Liu.

Additional information

Colored figures are available in the online version at https://link.springer.com/journal/11633

Isaac Baffour Senkyire received the B. Sc. degree in computer science from Department of Computer Science, Kwame Nkrumah University of Science and Technology (KNUST), Ghana in 2009, and the M. Sc. degree in information security and audit from Department of Computing and Information Systems, University of Greenwich, UK in 2014. He is a lecturer at Computer Science Department of Ghana Communication Technology University, Ghana. He is currently a Ph. D. degree candidate with School of Computer Science and Communication Engineering, Jiangsu University, China.

His research interests include medical image processing and pattern recognition.

Zhe Liu received the Ph. D. degree in computer science from Jiangsu University, China in 2012. She is a visiting scholar of Department of Radiology, University of Pittsburgh Medical Center, USA, and also a professor at School of Computer Science and Communication Engineering, Jiangsu University, China. She is a member of CCF.

Her research interests include image processing, data mining and pattern recognition.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senkyire, I.B., Liu, Z. Supervised and Semi-supervised Methods for Abdominal Organ Segmentation: A Review. Int. J. Autom. Comput. 18, 887–914 (2021). https://doi.org/10.1007/s11633-021-1313-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-021-1313-0

Keywords

Navigation