Skip to main content
Log in

ECG Biometrics via Enhanced Correlation and Semantic-rich Embedding

  • Research Article
  • Published:
Machine Intelligence Research Aims and scope Submit manuscript

Abstract

Electrocardiogram (ECG) biometric recognition has gained considerable attention, and various methods have been proposed to facilitate its development. However, one limitation is that the diversity of ECG signals affects the recognition performance. To address this issue, in this paper, we propose a novel ECG biometrics framework based on enhanced correlation and semantic-rich embedding. Firstly, we construct an enhanced correlation between the base feature and latent representation by using only one projection. Secondly, to fully exploit the semantic information, we take both the label and pairwise similarity into consideration to reduce the influence of ECG sample diversity. Furthermore, to solve the objective function, we propose an effective and efficient algorithm for optimization. Finally, extensive experiments are conducted on two benchmark datasets, and the experimental results show the effectiveness of our framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. S. A. El Rahman. Biometric human recognition system based on ECG. Multimedia Tools and Applications, vol. 78, no. 13, pp. 17555–17572, 2019. DOI: https://doi.org/10.1007/s11042-019-7152-0.

    Article  Google Scholar 

  2. Y. N. Singh, P. Gupta. ECG to individual identification. In Proceedings of the 2nd IEEE International Conference on Biometrics: Theory, Applications and Systems, IEEE, Washington, USA, 2008. DOI: https://doi.org/10.1109/BTAS.2008.4699343.

    Google Scholar 

  3. A. D. C. Chan, M. M. Hamdy, A. Badre, V. Badee. Wavelet distance measure for person identification using electrocardiograms. IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 2, pp. 248–253, 2008. DOI: https://doi.org/10.1109/TIM.2007.909996.

    Article  Google Scholar 

  4. M. Hejazi, S. A. R. Al-Haddad, S. J. Hashim, A. F. A. Aziz, Y. P. Singh. Feature level fusion for biometric verification with two-lead ECG signals. In Proceedings of the 12th International Colloquium on Signal Processing & its Applications, IEEE, Melaka, Malaysia, pp. 54–59, 2016. DOI: https://doi.org/10.1109/CSPA.2016.7515803.

    Google Scholar 

  5. K. N. Plataniotis, D. Hatzinakos, J. K. M. Lee. ECG biometric recognition without fiducial detection. In Proceedings of Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference, IEEE, Baltimore, USA, 2006. DOI: https://doi.org/10.1109/BCC.2006.4341628.

    Google Scholar 

  6. R. Balasubramanian, T. Chaspari, S. S. Narayanan. A knowledge-driven framework for ECG representation and interpretation for wearable applications. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, pp. 1018–1022, 2017. DOI: https://doi.org/10.1109/ICASSP.2017.7952310.

  7. Y. W. Huang, G. P. Yang, K. K. Wang, H. Y. Liu, Y. L. Yin. Learning joint and specific patterns: A unified sparse representation for off-the-person ECG biometric recognition. IEEE Transactions on Information Forensics and Security, vol. 16, pp. 147–160, 2021. DOI: https://doi.org/10.1109/TIFS.2020.3006384.

    Article  Google Scholar 

  8. J. X. Xu, G P. Yang, K. K. Wang, Y. W. Huang, H. Y. Liu, Y. L. Yin. Structural sparse representation with class-specific dictionary for ECG biometric recognition. Pattern Recognition Letters, vol. 135, pp. 44–49, 2020. DOI: https://doi.org/10.1016/j.patrec.2020.04.022.

    Article  Google Scholar 

  9. L. Kanaan, D. Merheb, M. Kallas, C. Francis, H. Amoud, P. Honeine. PCA and KPCA of ECG signals with binary SVM classification. In Proceedings of the IEEE Workshop on Signal Processing Systems, Beirut, Lebanon, pp. 344–348, 2011. DOI: https://doi.org/10.1109/SiPS.2011.6089000.

  10. R. J. Martis, U. R. Acharya, L. C. Min. ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomedical Signal Processing and Control, vol. 8, no. 5, pp. 437–448, 2013. DOI: https://doi.org/10.1016/j.bspc.2013.01.005.

    Article  Google Scholar 

  11. S. C. Wu, P. Z. Chen, A. L. Swindlehurst, P. L. Hung. Cancelable biometric recognition with ECGs: Subspace-based approaches. IEEE Transactions on Information Forensics and Security, vol. 14, no. 5, pp. 1323–1336, 2019. DOI: https://doi.org/10.1109/TIFS.2018.2876838.

    Article  Google Scholar 

  12. I. Odinaka, P. H. Lai, A. D. Kaplan, J. A. O’Sullivan, E. J. Sirevaag, J. W. Rohrbaugh. ECG biometric recognition: A comparative analysis. IEEE Transactions on Information Forensics and Security, vol. 7, no. 6, pp. 1812–1824, 2012. DOI: https://doi.org/10.1109/TIFS.2012.2215324.

    Article  Google Scholar 

  13. K. K. Wang, G. P. Yang, L. Yang, Y. W. Huang, Y. L. Yin. STERLING: Towards effective ECG biometric recognition. In Proceedings of IEEE International Joint Conference on Biometrics, Shenzhen, China, 2021. DOI: https://doi.org/10.1109/IJCB52358.2021.9484360.

  14. K. K. Wang, G. P. Yang, Y. W. Huang, L. Yang, Y. L. Yin. Joint dual-domain matrix factorization for ECG biometric recognition. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore, pp. 3134–3138, 2022. DOI: https://doi.org/10.1109/ICASSP43922.2022.9746066.

  15. K. K. Wang, G. P. Yang, Y. W. Huang, Y. L. Yin. Multiscale differential feature for ECG biometrics with collective matrix factorization. Pattern Recognition, vol. 102, Article number 107211, 2020. DOI: https://doi.org/10.1016/j.patcog.2020.107211.

  16. R. Li, G. P. Yang, K. K. Wang, Y. W. Huang, F. Yuan, Y. L. Yin. Robust ECG biometrics using GNMF and sparse representation. Pattern Recognition Letters, vol. 129, pp. 70–76, 2020. DOI: https://doi.org/10.1016/j.patrec.2019.11.005.

    Article  Google Scholar 

  17. Y. W. Huang, G. P. Yang, K. K. Wang, H. Y. Liu, Y. L. Yin. Robust multi-feature collective non-negative matrix factorization for ECG biometrics. Pattern Recognition, vol. 123, Article number 108376, 2022. DOI: https://doi.org/10.1016/j.patcog.2021.108376.

  18. G. B. Moody, R. G. Mark. The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Medicine and Biology Magazine, vol. 20, no. 3, pp. 45–50, 2001. DOI: https://doi.org/10.1109/51.932724.

    Article  Google Scholar 

  19. H. P. Da Silva, A. Lourenço, A. Fred, N. Raposo, M. Airesde-Sousa. Check your biosignals here: A new dataset for off-the-person ECG biometrics. Computer Methods and Programs in Biomedicine, vol. 113, no. 2, 503–514, 2014. DOI: https://doi.org/10.1016/j.cmpb.2013.11.017.

    Article  Google Scholar 

  20. J. S. Arteaga-Falconi, H. Al Osman, A. El Saddik. ECG authentication for mobile devices. IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 3, pp. 591–600, 2016. DOI: https://doi.org/10.1109/TIM.2015.2503863.

    Article  Google Scholar 

  21. A. Barros, D. Rosário, P. Resque, E. Cerqueira. Heart of IoT: ECG as biometric sign for authentication and identification. In Proceedings of the 15th International Wireless Communications & Mobile Computing Conference, IEEE, Tangier, Morocco, pp. 307–312, 2019. DOI: https://doi.org/10.1109/IWCMC.2019.8766495.

    Google Scholar 

  22. L. Biel, O. Pettersson, L. Philipson, P. Wide. ECG analysis: A new approach in human identification. IEEE Transactions on Instrumentation and Measurement, vol. 50, no. 3, pp. 808–812, 2001. DOI: https://doi.org/10.1109/19.930458.

    Article  Google Scholar 

  23. S. A. Israel, J. M. Irvine, A. Cheng, M. D. Wiederhold, B. K. Wiederhold. ECG to identify individuals. Pattern Recognition, vol. 38, no. 1, pp. 133–142, 2005. DOI: https://doi.org/10.1016/j.patcog.2004.05.014.

    Article  Google Scholar 

  24. A. Pal, Y. N. Singh. Biometric recognition using area under curve analysis of electrocardiogram. International Journal of Advanced Computer Science and Applications, vol. 10, no. 1, pp. 533–545, 2019. DOI: https://doi.org/10.14569/IJACSA.2019.0100169.

    Article  MathSciNet  Google Scholar 

  25. C. Bück, P. Kovács, P. Laguna, J. Meier, M. Huemer. ECG beat representation and delineation by means of variable projection. IEEE Transactions on Biomedical Engineering, vol. 68, no. 10, pp. 2997–3008, 2021. DOI: https://doi.org/10.1109/TBME.2021.3058781.

    Article  Google Scholar 

  26. A. Galli, G. Giorgi, C. Narduzzi. Individual recognition by gaussian ECG features. In Proceedings of IEEE International Instrumentation and Measurement Technology Conference, Dubrovnik, Croatia, pp. 1–5, 2020. DOI: https://doi.org/10.1109/I2MTC43012.2020.9129092.

  27. T. N. Alotaiby, S. R. Alrshoud, S. A. Alshebeili, L. M. Aljafar. ECG-based subject identification using statistical features and random forest. Journal of Sensors, vol. 2019, Article number 6751932, 2019. DOI: https://doi.org/10.1155/2019/6751932.

  28. W. Louis, D. Hatzinakos. Enhanced binary patterns for electrocardiogram (ECG) biometrics. In Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering, Vancouver, Canada, pp. 1–4, 2016. DOI: https://doi.org/10.1109/CCECE.2016.7726725.

  29. M. Hejazi, S. A. R. Al-Haddad, Y. P. Singh, S. J. Hashim, A. F. A. Aziz. ECG biometric authentication based on non-fiducial approach using kernel methods. Digital Signal Processing, vol. 52, pp. 72–86, 2016. DOI: https://doi.org/10.1016/j.dsp.2016.02.008.

    Article  Google Scholar 

  30. J. K. Wang, X. Qiao, C. C. Liu, X. P. Wang, Y. Y. Liu, L. K. Yao, H. Zhang. Automated ECG classification using a non-local convolutional block attention module. Computer Methods and Programs in Biomedicine, vol. 203, Article number 106006, 2021. DOI: https://doi.org/10.1016/j.cmpb.2021.106006.

  31. G. P. Zhu, M. Z. Ma, Y. W. Huang, K. K. Wang, G. P. Yang. Dual-domain low-rank fusion deep metric learning for off-the-person ECG biometrics. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore, pp. 2914–2918, 2022. DOI: https://doi.org/10.1109/ICASSP43922.2022.9747122.

  32. R. Salloum, C. C. J. Kuo. ECG-based biometrics using recurrent neural networks. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Orleans, USA, pp. 2062–2066, 2017. DOI: https://doi.org/10.1109/ICASSP.2017.7952519.

  33. Z. D. Zhao, Y. F. Zhang, Y. J. Deng, X. H. Zhang. ECG authentication system design incorporating a convolutional neural network and generalized S-transformation. Computers in Biology and Medicine, vol. 102, pp. 168–179, 2018. DOI: https://doi.org/10.1016/j.compbiomed.2018.09.027.

    Article  Google Scholar 

  34. R. D. Labati, E. Muñoz, V. Piuri, R. Sassi, F. Scotti. Deep-ECG: Convolutional neural networks for ECG biometric recognition. Pattern Recognition Letters, vol. 126, pp. 78–85, 2019. DOI: https://doi.org/10.1016/j.patrec.2018.03.028.

    Article  Google Scholar 

  35. W. Rudin. Principles of Mathematical Analysis, New York, USA: McGraw-Hill, 1976.

    MATH  Google Scholar 

  36. A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, H. E. Stanley. PhysioBank, physioToolkit, and physioNet: Components of a new research resource for complex physiologic signals. Circulation, vol. 101, no. 23, pp. e215–e220, 2000. DOI: https://doi.org/10.1161/01.cir.101.23.e215.

    Article  Google Scholar 

  37. R. Bousseljot, D. Kreiseler, A. Schnabel. Nutzung der EKG-Signaldatenbank CARDIODAT der PTB ü ber das internet. Biomedizinische Technik/Biomedical Engineering, vol. 40, no. 1, pp. 317–318, 1995. DOI: https://doi.org/10.1515/bmte.1995.40.s1.317.

    Google Scholar 

  38. J. P. Pan, W. J. Tompkins. A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering, vol. BME-32, no. 3, pp. 230–236, 1985. DOI: https://doi.org/10.1109/TBME.1985.325532.

    Article  Google Scholar 

  39. M. N. Dar, M. U. Akram, A. Usman, S. A. Khan. ECG biometric identification for general population using multiresolution analysis of DWT based features. In Proceedings of the 2nd International Conference on Information Security and Cyber Forensics, IEEE, Cape Town, South Africa, pp. 5–10, 2015. DOI: https://doi.org/10.1109/InfoSec.2015.7435498.

    Google Scholar 

  40. S. S. Abdeldayem, T. Bourlai. A novel approach for ECG-based human identification using spectral correlation and deep learning. IEEE Transactions on Biometrics, Behavior, and Identity Science, vol. 2, no. 1, 2020. DOI: https://doi.org/10.1109/TBIOM.2019.2947434.

  41. B. Wu, G. P. Yang, L. Yang, Y. L. Yin. Robust ECG biometrics using two-stage model. In Proceedings of the 24th International Conference on Pattern Recognition, IEEE, Beijing, China, pp. 1062–1067, 2018. DOI: https://doi.org/10.1109/ICPR.2018.8545285.

    Google Scholar 

  42. M. S. Islam, N. Alajlan. Biometric template extraction from a heartbeat signal captured from fingers. Multimedia Tools and Applications, vol. 76, no. 10, pp. 12709–12733, 2017. DOI: https://doi.org/10.1007/s11042-016-3694-6.

    Article  Google Scholar 

  43. I. Odinaka, P. H. Lai, A. D. Kaplan, J. A. O’Sullivan, E. J. Sirevaag, S. D. Kristjansson, A. K. Sheffeld, J. W. Rohrbaugh. ECG biometrics: A robust short-time frequency analysis. In Proceedings of IEEE International Workshop on Information Forensics and Security, Seattle, USA, 2010. DOI: https://doi.org/10.1109/WIFS.2010.5711466.

  44. E. J. Da Silva Luz, G. J. P. Moreira, L. S. Oliveira, W. R. Schwartz, D. Menotti. Learning deep off-the-person heart biometrics representations. IEEE Transactions on Information Forensics and Security, vol. 13, no. 5, pp. 1258–1270, 2018. DOI: https://doi.org/10.1109/TIFS.2017.2784362.

    Article  Google Scholar 

  45. Y. W. Huang, G. P. Yang, K. K. Wang, Y. L. Yin. Multi-view discriminant analysis with sample diversity for ECG biometric recognition. Pattern Recognition Letters, vol. 145, pp. 110–117, 2021. DOI: https://doi.org/10.1016/J.PATREC.2021.01.027.

    Article  Google Scholar 

  46. W. Louis, M. Komeili, D. Hatzinakos. Continuous authentication using one-dimensional multi-resolution local binary patterns (1DMRLBP) in ECG biometrics. IEEE Transactions on Information Forensics and Security, vol. 11, no. 12, pp. 2818–2832, 2016. DOI: https://doi.org/10.1109/TIFS.2016.2599270.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 62076151), Natural Science Foundation of Shandong Province, China (No. ZR2020 MF052), and the NSFC-Xinjiang Joint Fund, China (No. U1903127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gong-Ping Yang.

Ethics declarations

The authors declared that they have no conflicts of interest to this work.

Additional information

Colored figures are available in the online version at https://link.springer.com/journal/11633

Kui-Kui Wang received the M. Sc. degree in computer science and technology from Shandong University, China in 2017. Currently, she is a Ph. D. degree candidate in software engineering at School of Software Engineering, Shandong University, China.

Her research interests include pattern recognition, biometrics, and machine learning.

Gong-Ping Yang received the Ph. D. degree in computer software and theory from Shandong University, China in 2007. He is currently a professor at School of Software Engineering, Shandong University, China and an adjunct professor at School of Computer, Heze University, China.

His research interests include pattern recognition, image processing, and biometrics.

Lu Yang received the Ph. D. degree in computer science and technology from Shandong University, China in 2016. Now she is a professor with School of Computer Science and Technology, Shandong Jianzhu University, China.

Her research interests include biometrics and machine learning.

Yu-Wen Huang received the Ph. D. degree in computer science and technology from Shandong University, China in 2021. Now he is an associate professor with School of Computer, Heze University, China.

His research interests include ECG recognition, biometrics and machine learning.

Yi-Long Yin received the Ph. D. degree in agricultural mechanization engineering from Jilin University, China in 2000. He is the director of the Machine Learning and Data Mining Group and a professor with Shandong University, China. From 2000 to 2002, he was a post-doctoral fellow with Department of Electronic Science and Engineering, Nanjing University, China. His research interests include machine learning, data mining and computer vision.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, KK., Yang, GP., Yang, L. et al. ECG Biometrics via Enhanced Correlation and Semantic-rich Embedding. Mach. Intell. Res. 20, 697–706 (2023). https://doi.org/10.1007/s11633-022-1345-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-022-1345-0

Keywords

Navigation