Skip to main content
Log in

Advanced Histogram Equalization Based on a Hybrid Saliency Map and Novel Visual Prior

  • Research Article
  • Published:
Machine Intelligence Research Aims and scope Submit manuscript

Abstract

The traditional grayscale histogram of an input image is constructed by simply counting its pixels. Hence, the classical histogram equalization (HE) technique has fundamental defects such as overenhancement, underenhancement, and brightness drifting. This paper proposes an advanced HE based on a hybrid saliency map and a novel visual prior to addressing the defects mentioned above. First, the texture saliency map and attention weight map are constructed based on the texture saliency and visual attention mechanism. Later, the hybrid saliency map that is obtained by fusing the texture and attention weight maps is used to derive the saliency histogram. Then, a novel visual prior, the narrow dynamic range prior (NDP), is proposed, and the saliency histogram is modified by calculating the optimal parameter in combination with a binary optimization model. Next, the cumulative distribution function (CDF) is rectified to control the brightness. Finally, the hybrid saliency map is applied again for local enhancement. Compared with several state-of-the-art algorithms qualitatively and quantitatively, the proposed algorithm effectively improves the contrast of the image, generates better subjective visual perception, and presents better performance broadly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Y. T. Kim. Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Transactions on Consumer Electronics, vol. 43, no. 1, pp. 1–8, 1997. DOI: https://doi.org/10.1109/30.580378.

    Article  Google Scholar 

  2. Y. Wang, Q. Chen, B. Zhang. Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Transactions on Consumer Electronics, vol. 45, no. 1, pp. 68–75, 1999. DOI: https://doi.org/10.1109/30.754419.

    Article  Google Scholar 

  3. M. Abdullah-Al-Wadud, M. H. Kabir, M. A. A. Dewan, O. Chae. A dynamic histogram equalization for image contrast enhancement. IEEE Transactions on Consumer Electronics, vol. 53, no. 2, pp. 593–600, 2007. DOI: https://doi.org/10.1109/TCE.2007.381734.

    Article  Google Scholar 

  4. H. Ibrahim, N. S. P. Kong. Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Transactions on Consumer Electronics, vol. 53, no. 4, pp. 1752–1758, 2007. DOI: https://doi.org/10.1109/TCE.2007.4429280.

    Article  Google Scholar 

  5. Y. C. Hum, Y. K. Tee, W. S. Yap, H. Mokayed, T. S. Tan, M. I. M. Salim, K. W. Lai. A contrast enhancement framework under uncontrolled environments based on just noticeable difference. Signal Processing: Image Communication, vol. 103, Article number 116657, 2022. DOI: https://doi.org/10.1016/j.image.2022.116657.

  6. T. Arici, S. Dikbas, Y. Altunbasak. A histogram modification framework and its application for image contrast enhancement. IEEE Transactions on Image Processing, vol. 18, no. 9, pp. 1921–1935, 2009. DOI: https://doi.org/10.1109/TIP.2009.2021548.

    Article  MathSciNet  Google Scholar 

  7. S. C. Huang, F. C. Cheng, Y. S. Chiu. Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Transactions on Image Processing, vol. 22, no. 3, pp. 1032–1041, 2013. DOI: https://doi.org/10.1109/TIP.2012.2226047.

    Article  MathSciNet  Google Scholar 

  8. K. Zuiderveld. Contrast limited adaptive histogram equalization. Graphics Gems IV, P. S. Heckbert, Ed., Boston, USA: Academic Press Professional, Inc., pp. 474–485, 1994.

    Chapter  Google Scholar 

  9. J. Y. Kim, L. S. Kim, S. H. Hwang. An advanced contrast enhancement using partially overlapped sub-block histogram equalization. IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 4, pp. 475–484, 2001. DOI: https://doi.org/10.1109/76.915354.

    Article  Google Scholar 

  10. Y. Wang, Z. B. Pan. Image contrast enhancement using adjacent-blocks-based modification for local histogram equalization. Infrared Physics & Technology, vol. 86, pp. 59–65, 2017. DOI: https://doi.org/10.1016/j.infrared.2017.08.005.

    Article  Google Scholar 

  11. T. Celik, T. Tjahjadi. Contextual and variational contrast enhancement. IEEE Transactions on Image Processing, vol. 20, no. 12, pp. 3431–3441, 2011. DOI: https://doi.org/10.1109/TIP.2011.2157513.

    Article  MathSciNet  Google Scholar 

  12. C. Lee, C. Lee, C. S. Kim. Contrast enhancement based on layered difference representation of 2D histograms. IEEE Transactions on Image Processing, vol. 22, no. 12, pp. 5372–5384, 2013. DOI: https://doi.org/10.1109/TIP.2013.2284059.

    Article  Google Scholar 

  13. K. Srinivas, A. K. Bhandari, P. K. Kumar. A context-based image contrast enhancement using energy equalization with clipping limit. IEEE Transactions on Image Processing, vol. 30, pp. 5391–5401, 2021. DOI: https://doi.org/10.1109/TIP.2021.3083448.

    Article  Google Scholar 

  14. J. P. Gu, L. Hua, X. Wu, H. Yang, Z. T. Zhou. Color medical image enhancement based on adaptive equalization of intensity numbers matrix histogram. International Journal of Automation and Computing, vol. 12, no. 5, pp. 551–558, 2015. DOI: https://doi.org/10.1007/s11633-014-0871-9.

    Article  Google Scholar 

  15. K. Singh, D. K. Vishwakarma, G. S. Walia, R. Kapoor. Contrast enhancement via texture region based histogram equalization. Journal of Modern Optics, vol. 63, no. 15, pp. 1444–1450, 2016. DOI: https://doi.org/10.1080/09500340.2016.1154194.

    Article  Google Scholar 

  16. X. M. Wu, X. H. Liu, K. Hiramatsu, K. Kashino. Contrast-accumulated histogram equalization for image enhancement. In Proceedings of IEEE International Conference on Image Processing, Beijing, China, pp. 3190–3194, 2017. DOI: https://doi.org/10.1109/ICIP.2017.8296871.

    Google Scholar 

  17. X. M. Wu, T. Kawanishi, K. Kashino. Reflectance-guided, contrast-accumulated histogram equalization. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, pp. 2498–2502, 2020. DOI: https://doi.org/10.1109/ICASSP40776.2020.9054004.

    Google Scholar 

  18. X. M. Wu, T. Kawanishi, K. Kashino. Reflectance-guided histogram equalization and comparametric approximation. IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 3, pp. 863–876, 2021. DOI: https://doi.org/10.1109/TCSVT.2020.2991437.

    Article  Google Scholar 

  19. C. Jung, T. T. Sun. Optimized perceptual tone mapping for contrast enhancement of images. IEEE Transactions on Circuits and Systems for Video Technology, vol. 27, no. 6, pp. 1161–1170, 2017. DOI: https://doi.org/10.1109/TCSVT.2016.2527339.

    Article  Google Scholar 

  20. J. Wang, Y. H. Zhou, H. F. Sima, Z. Q. Huo, A. Z. Mi. Image inpainting based on structural tensor edge intensity model. International Journal of Automation and Computing, vol. 18, no. 2, pp. 256–265, 2021. DOI: https://doi.org/10.1007/s11633-020-1256-x.

    Article  Google Scholar 

  21. M. Lu, T. Chen, H. J. Liu, Z. Ma. Learned image restoration for VVC intra coding. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, IEEE, Long Beach, USA, 2019.

    Google Scholar 

  22. S. M. Zhou, J. Q. Gan, L. D. Xu, R. John. Interactive image enhancement by fuzzy relaxation. International Journal of Automation and Computing, vol. 4, no. 3, pp. 229–235, 2007. DOI: https://doi.org/10.1007/s11633-007-0229-7.

    Article  Google Scholar 

  23. A. K. Jain. Fundamentals of Digital Image Processing. Englewood Cliffs, USA: Prentice Hall, Inc., 1989.

    Google Scholar 

  24. N. Jayant. Signal compression: Technology targets and research directions. IEEE Journal on Selected Areas in Communications, vol. 10, no. 5, pp. 796–818, 1992. DOI: https://doi.org/10.1109/49.138986.

    Article  Google Scholar 

  25. Y. C. Li, H. Zhang, W. Y. Jia, D. Yuan, F. Y. Cheng, R. M. Jia, L. Li, M. G. Sun. Saliency guided naturalness enhancement in color images. Optik, vol. 127, no. 3, pp. 1326–1334, 2016. DOI: https://doi.org/10.1016/j.ijleo.2015.07.177.

    Article  Google Scholar 

  26. L. Itti, C. Koch, E. Niebur. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 11, pp. 1254–1259, 1998. DOI: https://doi.org/10.1109/34.730558.

    Article  Google Scholar 

  27. J. Harel, C. Koch, P. Perona. Graph-based visual saliency. In Proceedings of the 19th International Conference on Neural Information Processing Systems, Vancouver, Canada, pp. 545–552, 2006.

    Google Scholar 

  28. Y. Zhai, M. Shah. Visual attention detection in video sequences using spatiotemporal cues. In Proceedings of the 14th ACM International Conference on Multimedia, Santa Barbara, USA, pp. 815–824, 2006. DOI: https://doi.org/10.1145/1180639.1180824.

    Chapter  Google Scholar 

  29. M. M. Cheng, N. J. Mitra, X. L. Huang, P. H. S. Torr, S. M. Hu. Global contrast based salient region detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 3, pp. 569–582, 2015. DOI: https://doi.org/10.1109/TPAMI.2014.2345401.

    Article  Google Scholar 

  30. J. J. Liu, Q. B. Hou, M. M. Cheng. Dynamic feature integration for simultaneous detection of salient object, edge, and skeleton. IEEE Transactions on Image Processing, vol. 29, pp. 8652–8667, 2020. DOI: https://doi.org/10.1109/TIP.2020.3017352.

    Article  Google Scholar 

  31. Q. Wang, R. K. Ward. Fast image/video contrast enhancement based on weighted thresholded histogram equalization. IEEE Transactions on Consumer Electronics, vol. 53, no. 2, pp. 757–764, 2007. DOI: https://doi.org/10.1109/TCE.2007.381756.

    Article  Google Scholar 

  32. Q. Yuan, Z. Y. Wang, S. K. Dai. Histogram equalization based on binary optimization model with subjective and objective consistency. In Proceedings of IEEE International Conference on Networking, Sensing and Control, Xiamen, China, pp. 1–5, 2021. DOI: https://doi.org/10.1109/ICNSC52481.2021.9702126.

    Google Scholar 

  33. P. Babakhani, P. Zarei. Automatic gamma correction based on average of brightness. Advances in Computer Science: An International Journal, vol. 4, no. 6, pp. 156–159, 2015.

    Google Scholar 

  34. Z. Al-Ameen, M. A. Al-Healy, R. A. Hazim. Anisotropic diffusion-based unsharp masking for sharpness improvement in digital images. Journal of Soft Computing and Decision Support Systems, vol. 7, no. 1, pp. 7–12, 2020.

    Google Scholar 

  35. G. Deng, F. Galetto, M. Al-Nasrawi, W. Waheed. A guided edge-aware smoothing-sharpening filter based on patch interpolation model and generalized gamma distribution. IEEE Open Journal of Signal Processing, vol. 2, pp. 119–135, 2021. DOI: https://doi.org/10.1109/OJSP.2021.3063076.

    Article  Google Scholar 

  36. A. Y. Albakri, Z. Al-Ameen. Rapid contrast enhancement algorithm for natural contrast-distorted color images. AL-Rafidain Journal of Computer Sciences and Mathematics, vol. 15, no. 2, pp. 73–90, 2021. DOI: https://doi.org/10.33899/csmj.2021.170012.

    Article  Google Scholar 

  37. K. D. Ma, K. Zeng, Z. Wang. Perceptual quality assessment for multi-exposure image fusion. IEEE Transactions on Image Processing, vol. 24, no. 11, pp. 3345–3356, 2015. DOI: https://doi.org/10.1109/TIP.2015.2442920.

    Article  MathSciNet  Google Scholar 

  38. S. H. Wang, J. Zheng, H. M. Hu, B. Li. Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Transactions on Image Processing, vol. 22, no. 9, pp. 3538–3548, 2013. DOI: https://doi.org/10.1109/TIP.2013.2261309.

    Article  Google Scholar 

  39. P. Arbeláez, M. Maire, C. Fowlkes, J. Malik. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 5, pp. 898–916, 2011. DOI: https://doi.org/10.1109/TPAMI.2010.161.

    Article  Google Scholar 

  40. L. Zhang, Y. Shen, H. Y. Li. VSI: A visual saliency-induced index for perceptual image quality assessment. IEEE Transactions on Image Processing, vol. 23, no. 10, pp. 4270–4281, 2014. DOI: https://doi.org/10.1109/TIP.2014.2346028.

    Article  MathSciNet  Google Scholar 

  41. Y. M. Zhu, X. Z. Chen, S. K. Dai. No-reference image quality assessment for contrast distorted images. In Proceedings of the 11th International Conference Image and Graphics, Springer, Haikou, China, pp. 241–252, 2021. DOI: https://doi.org/10.1007/978-3-030-87361-5_20.

    Google Scholar 

  42. A. Mittal, R. Soundararajan, A. C. Bovik. Making a “completely blind” image quality analyzer. IEEE Signal Processing Letters, vol. 20, no. 3, pp. 209–212, 2013. DOI: https://doi.org/10.1109/LSP.2012.2227726.

    Article  Google Scholar 

  43. C. Ma, C. Y. Yang, X. K. Yang, M. H. Yang. Learning a no-reference quality metric for single-image super-resolution. Computer Vision and Image Understanding, vol. 158, pp. 1–16, 2017. DOI: https://doi.org/10.1016/j.cviu.2016.12.009.

    Article  Google Scholar 

  44. C. Y. Li, C. L. Guo, L. H. Han, J. Jiang, M. M. Cheng, J. W. Gu, C. C. Loy. Low-light image and video enhancement using deep learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 12, pp. 9396–9416, 2022. DOI: https://doi.org/10.1109/TPAMI.2021.3126387.

    Article  Google Scholar 

  45. Y. H. Zhang, J. W. Zhang, X. J. Guo. Kindling the darkness: A practical low-light image enhancer. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, pp. 1632–1640, 2019. DOI: https://doi.org/10.1145/3343031.3350926.

    Chapter  Google Scholar 

  46. C. L. Guo, C. Y. Li, J. C. Guo, C. C. Loy, J. H. Hou, S. Kwong, R. M. Cong. Zero-reference deep curve estimation for low-light image enhancement. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 1777–1786, 2020. DOI: https://doi.org/10.1109/CVPR42600.2020.00185.

    Google Scholar 

  47. Y. H. Zhang, X. J. Guo, J. Y. Ma, W. Liu, J. W. Zhang. Beyond brightening low-light images. International Journal of Computer Vision, vol. 129, no. 4, pp. 1013–1037, 2021. DOI: https://doi.org/10.1007/s11263-020-01407-x.

    Article  Google Scholar 

  48. Y. F. Wang, R. J. Wan, W. H. Yang, H. L. Li, L. P. Chau, A. Kot. Low-light image enhancement with normalizing flow. In Proceedings of the 36th AAAI Conference on Artificial Intelligence, Palo Alto, USA, pp. 2604–2612, 2022. DOI: https://doi.org/10.1609/aaai.v36i3.20162.

    Google Scholar 

  49. Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004. DOI: https://doi.org/10.1109/TIP.2003.819861.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengkui Dai.

Ethics declarations

The authors declared that they have no conflicts of interest to this work.

Additional information

Yuanbin Wu received the B. Sc. degree in communication engineering from Huaqiao University, China in 2020. He is currently a master student in transportation at Huaqiao University, China.

His research interests include image/video processing and computer vision.

Shengkui Dai received the B. Sc. degree in electronic engineering from South-Central University for Nationalities, China in 1993, the M. Sc. degree in pattern recognition and intelligent systems and Ph. D. degree in information and communication engineering from Huazhong University of Science and Technology, China in 2001 and 2005, respectively. From 2005 to 2007, he was engaged in post-doctoral research at Huazhong University of Science and Technology, China. He is currently with School of Information Science and Engineering, Huaqiao University, China.

His research interests include image video processing and computer vision.

Zhan Ma received the B. Sc. and M. Sc. degrees in electrical engineering from Huazhong University of Science and Technology, China in 2004 and 2006, respectively, and the Ph. D. degree in electrical engineering from New York University, USA in 2011. From 2011 to 2014, he was with Samsung Research America, USA, and Futurewei Technologies, Inc., USA. He is currently with School of Electronic Science and Engineering, Nanjing University, China. He was a co-recipient of the 2018 PCM Best Paper Finalist, the 2019 IEEE Broadcast Technology Society Best Paper Award, and the 2020 IEEE MMSP Grand Challenge Best Image Coding Solution. He is a senior member of IEEE.

His research interests include learning-based image/video coding and computational imaging.

Colored figures are available in the online version at https://link.springer.com/journal/11633

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Dai, S. & Ma, Z. Advanced Histogram Equalization Based on a Hybrid Saliency Map and Novel Visual Prior. Mach. Intell. Res. 21, 1178–1191 (2024). https://doi.org/10.1007/s11633-023-1448-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-023-1448-2

Keywords