Skip to main content

Advertisement

Log in

Analyzing multiset data by the Power STATIS-ACT method

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The STATIS-ACT method is a generalization of principal component analysis used to study simultaneously several data tables measured on the same observation units or variables. The goal of this method is to analyze the relationship between these data tables and to combine them into a compromise matrix corresponding to an optimal agreement between the data. In this paper, we propose a new approach to this method, referred to as the Power STATIS-ACT method, where the compromise matrix is derived from a general s-power based criterion \({(s\geqslant 1)}\) and investigate some of its theoretical and practical properties. Special attention is devoted to the 1-power case which makes the introduction of low rank versions of the compromise possible. We also examine the effect of varying the power parameter s on the compromise solutions. All results are illustrated with a number of real data tables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Arnold GM, Collins AJ (1993) Interpretation of transformed axes in multivariate analysis. Appl Stat 42: 381–400

    Article  MATH  Google Scholar 

  • Carroll JD (1968) Generalization of canonical correlation analysis in three or more sets of variables. In: Proceedings of the 76th convention of the American Psychology Association, vol 3, pp 227–228

  • Carroll JD, Chang JJ (1970) Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition. Psychometrika 35: 283–319

    Article  MATH  Google Scholar 

  • Casin P (2001) A generalization of principal component analysis of K sets of variables. Comput Stat Data Anal 35: 417–428

    Article  MathSciNet  MATH  Google Scholar 

  • Chaya C, Perez-Hugalde C, Judez L, Wee CS, Guinard JX (2003) Use of the STATIS method to analyze time-intensity profiling data. Food Qual Preference 15: 3–12

    Article  Google Scholar 

  • Chessel D, Doledec S (1995) ADE software hypercard stacks and quick-basic microsoft program library for the analysis of environmental data, Version 4 Documentation ESA. CNRS 5023, Université Lyon 1

  • Coquet R, Troxler L, Wipff G (1996) The STATIS method: characterization of conformational states of flexible molecules from molecular dynamics simulation in solution. J Mol Graph 14: 206–212

    Article  Google Scholar 

  • Derks E, Westerhuis JA, Smilde AG, King BM (2003) An introduction to multi-block component analysis by means of flavour language case study. Food Qual Preference 14: 497–506

    Article  Google Scholar 

  • Dijksterhuis GB, Punter PH (1990) Interpreting generalized procrustes analysis. ‘Analysis of variance’ tables. Food Qual Preference 2: 255–265

    Article  Google Scholar 

  • Dijksterhuis GB, Gower JC (1991) The interpretation of generalized procrustes analysis and allied methods. Food Qual Preference 3: 67–87

    Article  Google Scholar 

  • Escofier B, Pagès J (1994) Multiple factor analysis: afmult package. Comput Stat Data Anal 18: 121–140

    Article  MATH  Google Scholar 

  • Escofier B, Pagès J (1998) Analyses factorielles simples et multiples: objectifs, méthodes et interprétation. Dunod, Paris

    Google Scholar 

  • Escoufier Y (1987) The duality diagram: a means for better practical applications. Developments in numerical ecology (Roscoff, 1986). NATO Adv. Sci. Inst. Ser. G. Ecolog. Sci., 14. Springer, Berlin, pp 139–156

  • Gourvénec S, Stanimirova I, Saby CA, Airiau CY, Massart DL (2005) Monitoring batch processes with the STATIS approach. J Chemom 19: 288–300

    Article  Google Scholar 

  • Gower JC (1975) Generalised procrustes analysis. Psychometrika 40: 33–51

    Article  MathSciNet  MATH  Google Scholar 

  • Gower JC (1984) Procrustes analysis. In: Llyod EH (ed) Handbook of applicable mathematics, vol 6. Wiley, Chichester, pp 397–405

    Google Scholar 

  • Gower JC, Dijksterhuis GB (2004) Procrustes problems. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  • Groenen PJF (1993) The majorization approach to multidimensional scaling. DSWO Press, Leiden

    MATH  Google Scholar 

  • Hanafi M, Kiers HAL (2006) Analysis of K sets of data, with differential emphasis on agreement between and within sets. Comput Stat Data Anal 51: 1491–1508

    Article  MathSciNet  MATH  Google Scholar 

  • Harshman RA (1970) Foundations of the PARAFAC procedure: models and conditions for an explanatory multimodal factor analysis. UCLA Work Pap Phonetics 16: 1–84

    Google Scholar 

  • Healy MJR, Goldstein H (1976) An approach to the scaling of categorized attributes. Biometrika 63: 219–229

    Article  MATH  Google Scholar 

  • Horst P (1961) Relations among m sets of measures. Psychometrika 26: 129–149

    Article  MathSciNet  MATH  Google Scholar 

  • Kherif F, Poline JP, Mériaux S, Benali H, Flandin G, Brett M (2003) Group analysis in functional neuroimaging: selecting subjects using similarity measures. NeuroImage 20: 2197–2208

    Article  Google Scholar 

  • Kiers HAL (1990) Majorization as a tool for optimizing a class of matrix trace function. Psychometrika 55: 417–428

    Article  MathSciNet  MATH  Google Scholar 

  • Lavit C (1985) Application de la méthode STATIS. Statistique et Analyse des données 10: 103–116

    Google Scholar 

  • Lavit C (1988) Analyse conjointe de tableaux quantitatifs. Collection Méthodes Programmes. Masson, Paris

    Google Scholar 

  • Lavit C, Escoufier Y, Sabatier R, Traissac P (1994) The ACT (STATIS method). Comput Stat Data Anal 18: 97–117

    Article  MathSciNet  MATH  Google Scholar 

  • Lazraq A, Hanafi M, Cléroux R, Allaire J, Lepage Y (2008) Une approche inférentielle pour la validation du compromis de la méthode STATIS. Journal de la Société Française de statistique 149: 97–109

    Google Scholar 

  • L’Hermier des Plantes H, Thiébaut B (1977) Étude de la pluviosité au moyen de la méthode STATIS. Revue de Statistique Appliquée 25: 57–81

    Google Scholar 

  • Lütkepohl J (1996) Handbook of matrices. Wiley, New York

    MATH  Google Scholar 

  • Meyer R (1991) Canonical correlation analysis as starting point for extensions of correspondence analysis. Statistique et Analyse des Données 16: 55–77

    Google Scholar 

  • Meyners M, Kunert J, Qannari EM (2000) Comparing generalized procrustes analysis and STATIS. Food Qual Preference 11: 77–83

    Article  Google Scholar 

  • Oliveira MM, Mexia JT (2007) Modelling series of studies with a common structure. Comput Stat Data Anal 51: 5876–5885

    Article  MathSciNet  MATH  Google Scholar 

  • Pagès J (2005) Collection and analysis of perceived product inter-distances using multiple factor analysis: application to the study of 10 white wines from the Loire Valley. Food Qual Preference 16: 642–649

    Article  Google Scholar 

  • Qannari EM, Courcoux P, Lejeune M, Maystre (1997) Comparaison de trois stratégies de détermination d’un compromis en évaluation sensorielle. Revue de Statistique Appliquée 45: 61–74

    Google Scholar 

  • Qannari EM, Wakeling I, Courcoux P, MacFie HJH (2000) Defining the underlying sensory dimensions. Food Qual Preferences 11: 151–154

    Article  Google Scholar 

  • Robert P, Escoufier Y (1976) A unifying tool for linear multivariate statistical methods: the RV-coefficient. Appl Stat 25: 257–265

    Article  MathSciNet  Google Scholar 

  • Schlich P (1996) Defining and validating assessor compromises about product distances and attribute correlations. In: Naes T, Risvik E (eds) Multivariate analysis of data in sensory sciences. Elsevier, New York, pp 229–306

    Google Scholar 

  • Smilde AG, Westerhuis JA, de Jong S (2003) A framework for sequential multiblock component methods. J Chemom 17: 323–337

    Article  Google Scholar 

  • Stanimirova I, Walczack B, Massart DL, Simeonov V, Saby CA, Di Crescenzo E (2004) STATIS, a three-way method for data analysis. Application to environmental data. Chemom Intell Lab Syst 73: 219–233

    Article  Google Scholar 

  • Thioulouse J, Simier M, Chessel D (2004) Simultaneous analysis of a sequence of paired ecological tables. Ecology 85: 272–283

    Article  Google Scholar 

  • Tucker LR (1966) Some mathematical notes on three-mode factor analysis. Psychometrika 42: 593–600

    Google Scholar 

  • Verneaux J (1973) Cours d’eau de Franche comté (Massif du Jura). Recherches écologiques sur le réseau hydrographique du Doubs. Essai de biotypologie. PhD Thesis. University of Besançon

  • Vivien M, Sabatier R (2004) A generalization of STATIS-ACT strategy: DO-ACT for two multiblocks tables. Comput Stat Data Anal 46: 155–171

    Article  MathSciNet  MATH  Google Scholar 

  • Williams A, Langron SP (1984) The use of free-choice profiling for the evaluation of commercial ports. J Sci Food Agric 35: 558–568

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Bennani Dosse.

Additional information

The authors are obliged to the editors and referees for helpful suggestions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bénasséni, J., Bennani Dosse, M. Analyzing multiset data by the Power STATIS-ACT method. Adv Data Anal Classif 6, 49–65 (2012). https://doi.org/10.1007/s11634-011-0085-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11634-011-0085-8

Keywords

Mathematics Subject Classification (2000)