Abstract
The STATIS-ACT method is a generalization of principal component analysis used to study simultaneously several data tables measured on the same observation units or variables. The goal of this method is to analyze the relationship between these data tables and to combine them into a compromise matrix corresponding to an optimal agreement between the data. In this paper, we propose a new approach to this method, referred to as the Power STATIS-ACT method, where the compromise matrix is derived from a general s-power based criterion \({(s\geqslant 1)}\) and investigate some of its theoretical and practical properties. Special attention is devoted to the 1-power case which makes the introduction of low rank versions of the compromise possible. We also examine the effect of varying the power parameter s on the compromise solutions. All results are illustrated with a number of real data tables.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Arnold GM, Collins AJ (1993) Interpretation of transformed axes in multivariate analysis. Appl Stat 42: 381–400
Carroll JD (1968) Generalization of canonical correlation analysis in three or more sets of variables. In: Proceedings of the 76th convention of the American Psychology Association, vol 3, pp 227–228
Carroll JD, Chang JJ (1970) Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition. Psychometrika 35: 283–319
Casin P (2001) A generalization of principal component analysis of K sets of variables. Comput Stat Data Anal 35: 417–428
Chaya C, Perez-Hugalde C, Judez L, Wee CS, Guinard JX (2003) Use of the STATIS method to analyze time-intensity profiling data. Food Qual Preference 15: 3–12
Chessel D, Doledec S (1995) ADE software hypercard stacks and quick-basic microsoft program library for the analysis of environmental data, Version 4 Documentation ESA. CNRS 5023, Université Lyon 1
Coquet R, Troxler L, Wipff G (1996) The STATIS method: characterization of conformational states of flexible molecules from molecular dynamics simulation in solution. J Mol Graph 14: 206–212
Derks E, Westerhuis JA, Smilde AG, King BM (2003) An introduction to multi-block component analysis by means of flavour language case study. Food Qual Preference 14: 497–506
Dijksterhuis GB, Punter PH (1990) Interpreting generalized procrustes analysis. ‘Analysis of variance’ tables. Food Qual Preference 2: 255–265
Dijksterhuis GB, Gower JC (1991) The interpretation of generalized procrustes analysis and allied methods. Food Qual Preference 3: 67–87
Escofier B, Pagès J (1994) Multiple factor analysis: afmult package. Comput Stat Data Anal 18: 121–140
Escofier B, Pagès J (1998) Analyses factorielles simples et multiples: objectifs, méthodes et interprétation. Dunod, Paris
Escoufier Y (1987) The duality diagram: a means for better practical applications. Developments in numerical ecology (Roscoff, 1986). NATO Adv. Sci. Inst. Ser. G. Ecolog. Sci., 14. Springer, Berlin, pp 139–156
Gourvénec S, Stanimirova I, Saby CA, Airiau CY, Massart DL (2005) Monitoring batch processes with the STATIS approach. J Chemom 19: 288–300
Gower JC (1975) Generalised procrustes analysis. Psychometrika 40: 33–51
Gower JC (1984) Procrustes analysis. In: Llyod EH (ed) Handbook of applicable mathematics, vol 6. Wiley, Chichester, pp 397–405
Gower JC, Dijksterhuis GB (2004) Procrustes problems. Oxford University Press, Oxford
Groenen PJF (1993) The majorization approach to multidimensional scaling. DSWO Press, Leiden
Hanafi M, Kiers HAL (2006) Analysis of K sets of data, with differential emphasis on agreement between and within sets. Comput Stat Data Anal 51: 1491–1508
Harshman RA (1970) Foundations of the PARAFAC procedure: models and conditions for an explanatory multimodal factor analysis. UCLA Work Pap Phonetics 16: 1–84
Healy MJR, Goldstein H (1976) An approach to the scaling of categorized attributes. Biometrika 63: 219–229
Horst P (1961) Relations among m sets of measures. Psychometrika 26: 129–149
Kherif F, Poline JP, Mériaux S, Benali H, Flandin G, Brett M (2003) Group analysis in functional neuroimaging: selecting subjects using similarity measures. NeuroImage 20: 2197–2208
Kiers HAL (1990) Majorization as a tool for optimizing a class of matrix trace function. Psychometrika 55: 417–428
Lavit C (1985) Application de la méthode STATIS. Statistique et Analyse des données 10: 103–116
Lavit C (1988) Analyse conjointe de tableaux quantitatifs. Collection Méthodes Programmes. Masson, Paris
Lavit C, Escoufier Y, Sabatier R, Traissac P (1994) The ACT (STATIS method). Comput Stat Data Anal 18: 97–117
Lazraq A, Hanafi M, Cléroux R, Allaire J, Lepage Y (2008) Une approche inférentielle pour la validation du compromis de la méthode STATIS. Journal de la Société Française de statistique 149: 97–109
L’Hermier des Plantes H, Thiébaut B (1977) Étude de la pluviosité au moyen de la méthode STATIS. Revue de Statistique Appliquée 25: 57–81
Lütkepohl J (1996) Handbook of matrices. Wiley, New York
Meyer R (1991) Canonical correlation analysis as starting point for extensions of correspondence analysis. Statistique et Analyse des Données 16: 55–77
Meyners M, Kunert J, Qannari EM (2000) Comparing generalized procrustes analysis and STATIS. Food Qual Preference 11: 77–83
Oliveira MM, Mexia JT (2007) Modelling series of studies with a common structure. Comput Stat Data Anal 51: 5876–5885
Pagès J (2005) Collection and analysis of perceived product inter-distances using multiple factor analysis: application to the study of 10 white wines from the Loire Valley. Food Qual Preference 16: 642–649
Qannari EM, Courcoux P, Lejeune M, Maystre (1997) Comparaison de trois stratégies de détermination d’un compromis en évaluation sensorielle. Revue de Statistique Appliquée 45: 61–74
Qannari EM, Wakeling I, Courcoux P, MacFie HJH (2000) Defining the underlying sensory dimensions. Food Qual Preferences 11: 151–154
Robert P, Escoufier Y (1976) A unifying tool for linear multivariate statistical methods: the RV-coefficient. Appl Stat 25: 257–265
Schlich P (1996) Defining and validating assessor compromises about product distances and attribute correlations. In: Naes T, Risvik E (eds) Multivariate analysis of data in sensory sciences. Elsevier, New York, pp 229–306
Smilde AG, Westerhuis JA, de Jong S (2003) A framework for sequential multiblock component methods. J Chemom 17: 323–337
Stanimirova I, Walczack B, Massart DL, Simeonov V, Saby CA, Di Crescenzo E (2004) STATIS, a three-way method for data analysis. Application to environmental data. Chemom Intell Lab Syst 73: 219–233
Thioulouse J, Simier M, Chessel D (2004) Simultaneous analysis of a sequence of paired ecological tables. Ecology 85: 272–283
Tucker LR (1966) Some mathematical notes on three-mode factor analysis. Psychometrika 42: 593–600
Verneaux J (1973) Cours d’eau de Franche comté (Massif du Jura). Recherches écologiques sur le réseau hydrographique du Doubs. Essai de biotypologie. PhD Thesis. University of Besançon
Vivien M, Sabatier R (2004) A generalization of STATIS-ACT strategy: DO-ACT for two multiblocks tables. Comput Stat Data Anal 46: 155–171
Williams A, Langron SP (1984) The use of free-choice profiling for the evaluation of commercial ports. J Sci Food Agric 35: 558–568
Author information
Authors and Affiliations
Corresponding author
Additional information
The authors are obliged to the editors and referees for helpful suggestions.
Rights and permissions
About this article
Cite this article
Bénasséni, J., Bennani Dosse, M. Analyzing multiset data by the Power STATIS-ACT method. Adv Data Anal Classif 6, 49–65 (2012). https://doi.org/10.1007/s11634-011-0085-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11634-011-0085-8