Skip to main content
Log in

Adaptation of interval PCA to symbolic histogram variables

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

Abstract

This paper is an adaptation of symbolic interval Principal Component Analysis (PCA) to histogram data. We proposed two methodologies. The first one involved three steps: the coding of bins of histogram, the ordinary PCA of means of variables and the representation of dispersion of symbolic observations we call concepts. For the representation of dispersion of these concepts we proposed the transformation of histograms into intervals. Then, we suggest the projection of the hypercubes or the interval lengths associated to each concept on the principal axes of the ordinary PCA of means. In the second methodology, we proposed the use of the three previous steps with the angular transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitchison J (1986) The statistical analysis of compositionnal data. Chapman and Hall, London

    Book  Google Scholar 

  • Bock H-H, Diday E (2000) Analysis of symbolic data exploratory methods for extracting statistical information from complex data. Springer, Heidelberg, p 425

  • Billard L, Diday E (2006) Symbolic data analysis: conceptual statistics and data mining. In: Wiley series in computational statistics

  • Bishop Y, Feinberg S, Holland P (1975) Discrete multivariate analysis, theory and practice. MIT Press, Cambridge

    MATH  Google Scholar 

  • Cazes P, Chouakria A, Diday E, Schektman Y (1997) Extension de l’analyse en composantes principales a des données de type intervalle. Rev Statistique Appliquée 45(3): 5–24

    Google Scholar 

  • Cazes P (2002) Analyse factorielle d’un tableau de lois de probabilité. Rev Statistique Appliquée 50(3): 5–24

    MathSciNet  Google Scholar 

  • Chessel D, Dufour A-B, Thioulouse J (2004) The ade4 package-IOne- table methods. R News 4: 5–10

    Google Scholar 

  • Diday E, Noirhomme M (2008) Symbolic data analysis and the SODAS software. Wiley, London

    MATH  Google Scholar 

  • Eckart C, Young G (1936) The approximation of one matrix by another of lower rank. Psychometria 1: 211–218

    Article  MATH  Google Scholar 

  • Escoffier B, Pagès J (1998) Analyses factorielles simples et multiples; objectifs,méthodes et interprètation. 3rd edn. Dunod, Paris

    Google Scholar 

  • Fisher RA (1922) On the mathematical foundations of theoretical statistics. Philos Trans Roy Soc London Ser A 222: 309–368

    Article  Google Scholar 

  • Gower JC (1975) Generalized procrustes analysis. Psychometrika 40: 33–51

    Article  MathSciNet  MATH  Google Scholar 

  • Husson F, Josse J, Le S, Mazet J (2009) Package FactomineR : an R package for exploratory data analysis. R News, CRAN-2009

  • Ichino M (2008) Symbolic PCA for histogram-valued data. In: Proceedings IASC. December 5–8, Yokohama, Japan, 2008

  • Ichino M (2011) The quantile method for symbolic principal component analysis. Stat Anal Data Min 4(2): 184–198

    Article  MathSciNet  Google Scholar 

  • Lavit C (1988) Analyse conjointe de tableaux quantitatifs. Masson, Paris

    Google Scholar 

  • L’Hermier des Plantes H (1976) Structuration des Tableaux à Trois Indices de la Statistique. Thèse de 3e cycle. Université de Montpellier

  • Nagabhushan P, Kumar P (2007) Principal component analysis of histogram data. Springer, Berlin

    Google Scholar 

  • Rodriguez O, Diday E, Winsberg S (2001) Generalization of the principal component analysis to histogram data. Workshop on symbolic data analysis, 4th Europ. Conf. on Princ., Sept. 12–16, 2000, Lyon, 1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Makosso-Kallyth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makosso-Kallyth, S., Diday, E. Adaptation of interval PCA to symbolic histogram variables. Adv Data Anal Classif 6, 147–159 (2012). https://doi.org/10.1007/s11634-012-0108-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11634-012-0108-0

Keywords

Mathematics Subject Classification