Skip to main content
Log in

Image data analysis and classification in marketing

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

Abstract

Nowadays, the diffusion of smartphones, tablet computers, and other multipurpose equipment with high-speed Internet access makes new data types available for data analysis and classification in marketing. So, e.g., it is now possible to collect images/snaps, music, or videos instead of ratings. With appropriate algorithms and software at hand, a marketing researcher could simply group or classify respondents according to the content of uploaded images/snaps, music, or videos. However, appropriate algorithms and software are sparsely known in marketing research up to now. The paper tries to close this gap. Algorithms and software from computer science are presented, adapted and applied to data analysis and classification in marketing. The new SPSS-like software package IMADAC is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acock A (2005) SAS, Stata, SPSS: a comparison. J Marriage Fam 67(4):1093–1095

    Article  Google Scholar 

  • ADM (2010) Jahresbericht 2010. Arbeitskreis deutscher Markt- und Sozialforschungsinstitute (ADM) e.V., Frankfurt/Main

  • Ahmad N, Omar A, Ramayah T (2010) Consumer lifestyles and online shopping continuance intention. Bus Strateg Ser 11(4):227–243

    Article  Google Scholar 

  • Albatineh A, Niewiadomska-Bugaj M (2011) Correcting jaccard and other similarity indices for chance agreement in cluster analysis. Adv Data Anal Classif 5(3):179–200

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson W, Golden L (1984) Lifestyle and psychographics: a critical review and recommendation. Adv Consum Res 11:405–411

    Google Scholar 

  • Arabie P, Hubert L (1995) Advances in cluster analysis relevant to marketing research. Stud Classif Data Anal Knowl Org 6:3–19

    Google Scholar 

  • ARD/ZDF (2011) ARD/ZDF-Onlinestudie 2011. ARD/ZDF. http://www.ard-zdf-onlinestudie.de

  • Baier D (2003) Classification and marketing research. Taksonomia 10:21–39

    Google Scholar 

  • Baier D, Brusch M (2008) Marktsegmentierung. In: Herrmann A, Homburg C, Klarmann M (eds) Handbuch Marktforschung. Methoden Anwendungen Praxisbeispiele, Gabler, pp 769–790

  • Baier D, Daniel I (2012) Image clustering for marketing purposes. Stud Classif Data Anal Knowl Org 43:487–494

    Article  Google Scholar 

  • Baier D, Gaul W (1999) Optimal product positioning based on paired comparison data. J Econ 89(1):365–392

    MATH  Google Scholar 

  • Baier D, Stüber E (2010) Acceptance of recommendations to buy in online retailing. J Retail Consum Serv 17(3):173–180

    Article  Google Scholar 

  • Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (SURF). Comput Vis Image Understand 110(3):346–359

    Article  Google Scholar 

  • Bearden W, Netemeyer R, Teel J (1989) Measurement of consumer susceptibility influence. J Consum Res 15:473–481

    Article  Google Scholar 

  • Buckinx W, Van den Poel D (2005) Customer base analysis: partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting. Eur J Oper Res 164(1):252–268

    Article  MATH  Google Scholar 

  • Burget R, Karasek J, Smekal Z, Uher V, Dostal O (2010) RapidMiner image processing extension: a platform for collaborative research. In: The 33rd international conference on telecommunication and signal processing, TSP, pp 114–118

  • BVM (2011) Marktforschung 2011/2012—BVM Handbuch der Institute und Dienstleister. Berufsverband Deutscher Markt- und Sozialforscher (BVM) e.V., Berlin

  • Choras R (2007) Image feature extraction techniques and their applications for CBIR and biometrics systems. Int J Biol Biomed Eng 1(1):6–16

    Google Scholar 

  • Daniel I, Baier D (2012) Lifestyle segmentation based on contents of preferred images versus ratings of items. Stud Classif Data Anal Knowl Org (to appear)

  • Datta R, Joshi D, Li J, Wang J (2008) Image retrieval: ideas, influences, and trends of the new age. ACM Comput Surv 40(2):5:1–60

    Google Scholar 

  • Duda RO, Hart PE (1973) Pattern classification and scene analysis. Wiley, New York

    MATH  Google Scholar 

  • Fleuret F, Geman D (2008) Stationary features and cat detection. J Mach Learn Res 9:2549–2578

    MathSciNet  MATH  Google Scholar 

  • Foley JD, van Dam A, Feiner SK, Hughes JF (1999) Computer graphics: principles and practice. Addison-Wesley Publishing Company, Reading

    Google Scholar 

  • Frost S, Baier D (2012) Using earth mover’s distance and its approximations for clustering images—a comparison. Stud Classif Data Anal Knowl Org (to appear)

  • Fu KS, Rosenfeld A (1976) Pattern recognition and image processing. IEEE Trans Comput 25(12):1336–1346

    Article  MATH  Google Scholar 

  • Gaul W, Baier D (1994) Marktforschung und Marketing Management: Computerbasierte Entscheidungsunterstützung. Oldenbourg, München

    Google Scholar 

  • Gaul W, Schmidt-Thieme L (2002) Recommender systems based on user navigational behavior in the internet. Behaviormetrika 29(1):1–22

    Article  MathSciNet  MATH  Google Scholar 

  • Gonzalez A, Bello L (2002) The construct lifestyle in market segmentation—the behavior of tourist consumers. Eur J Mark 36:51–85

    Article  Google Scholar 

  • Gonzalez R, Woods R (2002) Digital image processing. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Haralick R, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621

    Article  Google Scholar 

  • Hu M (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory 8(2):179–187

    Article  MATH  Google Scholar 

  • Hubert L, Arabie P (1985) Comparing partitions. J Classif 2:193–218

    Article  Google Scholar 

  • IBM (2009) IBM to acquire SPSS Inc. to provide clients predictive analytics capabilities. International Business Machines (IBM) Corp, News Release July 28, 2009

  • IBM (2011) IBM SPSS Statistics 20 core system user’s guide. http://www.spss.com

  • Kapferer JN (1995) Brand confusion: empirical study of a legal concept. Psychol Mark 12(6):551–569

    Article  Google Scholar 

  • Kato T (1992) Database architecture for content-based image retrieval. In: Jambardino AA, Niblack WR (eds) Image storage and retrieval systems, Proc. SPIE 1662, San Jose, pp 112–123

  • KDNuggets (2011) KDNuggets polls. www.kdnuggets.com/polls

  • Kim Y, Street W (2004) An intelligent system for customer targeting: a data mining approach. Decis Support Syst 37(2):215–228

    Article  Google Scholar 

  • Law M, Figueiredo M, Jain A (2004) Simultaneous feature selection and clustering using mixture model. IEEE Trans Pattern Anal Mach Intell 26(9):1154–1166

    Article  Google Scholar 

  • Lazer W (1963) Life style concepts and marketing. In: Greyser A (ed) Toward Scientific Marketing. American Marketing Association, Chicago, pp 130–139

    Google Scholar 

  • Lee HJ, Lim H, Jolly L, Lee J (2009) Consumer lifestyles and adoption of high-technology products: a case of south korea. J Int Consum Mark 21(2):153–167

    Article  Google Scholar 

  • Ling H, Okada K (2007) An efficient earth mover’s distance algorithm for robust histogram comparison. IEEE Trans Pattern Anal Mach Intell 29(5):840–853

    Article  Google Scholar 

  • Liu Y, Zhang D, Lu G, Ma WY (2007) Asurvey of content-based image retrieval with high-level semantics. Pattern Recognit 40:262–282

    Article  MATH  Google Scholar 

  • Lowe D (1999) Object recognition from local scale-invariant features. In: The proceedings of the seventh IEEE international conference on computer vision, vol 2, pp 1150–1157

  • Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  • MacCallum R (1983) A comparison of factor analysis programs in SPSS, BMDP, and SAS. Psychometrika 48(2):223–231

    Article  MATH  Google Scholar 

  • Maheshwari M, Silakari S, Motwani M (2009) Image clustering using color and texture. In: First international conference on computational intelligence, communication systems and networks, Indore, pp 403–408

  • Niemann H (1983) Klassifikation von Mustern. Springer, Berlin

    Book  MATH  Google Scholar 

  • Nunnally J (1978) Psychometric theory. McGraw-Hill, New York

    Google Scholar 

  • Pele O, Werman M (2009) Fast and robust earth mover’s distances. In: IEEE 12th international conference on computervision, vol 12, no. 1, pp 460–467

  • Peleg S, Werman M, Rom H (1989) A unified approach to the change of resolution: space and gray-level. IEEE Trans Pattern Anal Mach Intell 11(7):739–742

    Article  Google Scholar 

  • Plummer J (1974) The concept and application of life style segmentation. J Mark 38(1):33–37

    Article  Google Scholar 

  • Punj G, Stewart DW (1983) Cluster analysis in marketing research: review and suggestions for application. J Mark Res 20:134–148

    Article  Google Scholar 

  • Puzicha J, Buhmann J, Rubner Y, Tomasi C (1999) Empirical evaluation of dissimilarity measures for color and texture. In: Proceedings ot the seventh IEEE international conference on computer vision, vol 2, pp 1165–1172

  • Rapid-I (2010) Rapidminer 5.0 user manual. http://www.rapid-i.com

  • Resankova H, Husek D (2002) Comparison of SAS, SPSS and STATISTICA systems in the area of clustering variables. Comput Stat Data Anal 41(2):331–339

    Google Scholar 

  • Rexer K (2010) 4th annual rexer analytics data miner survey. In: Predictive analytics world, Oct. 2010. Washington, D.C

  • Rosenfeld A (1969) Picture processing by computer. Computer science and applied mathematics. Academic Press, New York

    Google Scholar 

  • Rubner Y, Tomasi C (2001) Perceptual metrics for image database navigation. Kluwer Academic Publishers, Boston

    MATH  Google Scholar 

  • Rubner Y, Guibas L, Tomasi C (1997) The earth mover’s distance, multi-dimensional scaling, and color-based image retrieval. In: Proceedings of the ARPA image understanding workshop, pp 661–668

  • Rubner Y, Tomasi C, Guibas L (2000) The earth mover’s distance as a metric for image retrieval. Int J Comput Vis 40(2):99–121

    Article  MATH  Google Scholar 

  • Rui Y, Huang T, Chang SF (1999) Image retrieval: current techniques, promising directions, and open issues. J Vis Commun Image Represent 10(1):39–62

    Article  Google Scholar 

  • Schmitt I (2005) Ähnlichkeitssuche in Multimedia-Datenbanken—retrieval. Suchalgorithmen und Anfragebehandlung, Oldenbourg

    Google Scholar 

  • Schwaiger M (2006) Wirkungskontrolle kommunikationspolitischer Maßnahmen. In: Tomczak T (ed) Reinecke S. Handbuch Marketingcontrolling, Gabler, pp 521–548

  • Schwarz M, Cowan W, Beatty J (1987) An experimental comparison of RGB, YIQ, LAB, HSV, and opponent color models. ACM Trans Graph 6(2):123–158

    Article  Google Scholar 

  • Sebe N, Lew M (2001) Texture features for content-based retrieval. In: Lew M (ed) Principles of visual information retrieval. Springer, London, pp 51–85

    Google Scholar 

  • Serratosa F, Sanroma G (2008) A fast approximation of the earth-movers distance between multidimensional histograms. Int J Pattern Recognit Artif Intell 22(8):1539–1558

    Article  Google Scholar 

  • Sinus (2009) Informationen zu den Sinus-Milieus 2009. Sinus Sociovision GmbH, Heidelberg

  • Smith W (1956) Product differentiation and market segmentation as alternative marketing strategies. J Mark 21:3–8

    Article  Google Scholar 

  • Swain M, Ballard D (1991) Color indexing. Int J Comput Vis 7(1):11–32

    Article  Google Scholar 

  • Tamura H, Mori S, Yamawaki T (1978) Texture features corresponding to visual perception. IEEE Trans Syst Man Cybern 8(6):460–473

    Article  Google Scholar 

  • Tuma M, Decker R, Scholz S (2011) A survey of the challenges and pitfalls of cluster analysis application in market segmentation. Int J Mark Res 53(3):391–415

    Article  Google Scholar 

  • van Horen F, Pieters R (2012) When high-similarity copycats lose and moderate-similarity copycats gain: the impact of comparative evaluation. J Mark Res 49(2):83–91

    Article  Google Scholar 

  • van House (2007) Flickr and public image-sharing: distant closeness and photo exhibition. In: Conference on human factors in computing systems, San Jose, pp 2717–2722

  • Venables W, Smith D, Team RDC (2011) An introduction to R: notes on R. Department of Statistics and Mathematics, Vienna University of Economics and Business, Vienna, A Programming Environment for Data Analysis and Graphics

  • Wahbeh A, Al-Radaideh Q, Al-Kabi M, Al-Shawakfa E (2011) A comparison study between data mining tools over some classification methods. Int J Adv Comput Sci Appl Spec Issue 3:18–26

    Google Scholar 

  • Wedel M, Kamakura W (2000) Market segmentation: conceptual and methodological foundations. Kluwer, Dordrecht

    Google Scholar 

  • Weihs C, Ligges D, Mörchen F, Müllensiefen D (2007) Classification in music research. Adv Data Anal Classif 1(3):255–291

    Article  MathSciNet  MATH  Google Scholar 

  • Wells W, Tigert D (1971) Activities, interests and opinions. J Advert Res 11:27–35

    Google Scholar 

  • Wyszecki G, Stiles W (1982) Color science. Concepts and methods, quantitative data and formulae, 2nd edn. Wiley, New York

    Google Scholar 

  • Yankelovich D (1964) New criteria for market segmentation. Harvard Bus Rev 42(March–April):83–90

    Google Scholar 

  • Yankelovich D, Meer D (2006) Rediscovering market segmentation. Harvard Bus Rev 84(2):122–131

    Google Scholar 

  • Zellhöfer D, Schmitt I (2009) A preference-based approach for interactive weight learning—learning weights within a logic-based query language. Distrib Parallel Databases 27(1):31–51

    Article  Google Scholar 

Download references

Acknowledgments

Research was supported by the German Federal Ministry of Education and Research, FKZ 03FO3072. We wish to thank Prof. Dr. Ingo Schmitt, Chair of Database and Information Systems at BTU Cottbus, and his research group for their provision of feature extraction software within this common project. They gave us valuable comments with respect to the state of the art in image analysis and content based image retrieval. Also, we wish to thank two anonymous reviewers of our paper for their helpful suggestions for improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Baier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baier, D., Daniel, I., Frost, S. et al. Image data analysis and classification in marketing. Adv Data Anal Classif 6, 253–276 (2012). https://doi.org/10.1007/s11634-012-0116-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11634-012-0116-0

Keywords

Mathematics Subject Classification

Navigation