Abstract
In this article, we review quantum search algorithms for unsorted database search problem. Unsorted database search is a very important problem in science and technology. In a quantum computer, a marked state can be found with very high probability using the Grover’s algorithm, or exactly with the Long algorithm. We review the Grover algorithm and related generalizations. In particular, we review the phase matching conditions in quantum search algorithm. Several issues that may cause confusion about the quantum search algorithm are also clarified.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Brassard G. Searching a quantum phone book. Science, 1997, 275(5300): 627–628
Brassard G, Hoyer P. An exact quantum polynomial-time algorithm for Simon’s problem. In: Proceedings of 35th Annual Symposium on the Foundations of Computer Sciences. 1997, 116–123
Brassard G, Hoyer P, Tapp A. Quantum counting. Lecture Notes in Computer Science, 1998, 1443: 820–831
Benioff P. Space searches with a quantum robot. In: Quantum computation and information. Washington DC: AMS Series on Contemporary Mathematics, 2000, 305: 1–12. See also in e-print quant-ph/0003006
Twamley J J. A hidden shift quantum algorithm. J. Phys. A, 2000, 33: 8973–8979
Guo H, Long G L, Sun Y. A quantum Algorithm for Finding a Hamilton Circuit. Commun. Theor. Phys., 2001, 35(4): 385–388
Guo H, Long G L, Li F, Quantum algorithms for some well-known NP problems. Commun. Theor. Phys. 2002, 37(4): 424–426
Yao A C, Bentley J. An almost optimal algorithm for unbounded searching. Information Processing Letters, 1976, 5: 82–87
Yao A C, Yao F F. The complexity of searching an ordered random table. In: Proceedings of 17th IEEE Symposium on Foundations of Computer Science. Houston, Texas: 1976, 222–227
Shor P W. Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the Symposium on the Foundations of computer Science. New York: IEEE Computer Society Press, 1994, 124–134
Grover L K. A fast quantum mechanical algorithm for database search. In: Proceedings of 28th Annual ACM Symposium on Theory of Computing. New York: ACM, 1996, 212–219
Grover L K. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 1997, 79(2): 325–328
Deutsch D, Jozsa R. Rapid Solution of Problems by Quantum Computation. Proc. R. Soc. London A, 1992, 439(1907): 553–558
Sun X M, Yao A C, Zhang S Y. Graph properties and circular functions: how low can quantum query complexity go? In: Proceedings of 19th IEEE Conference on Computational Complexity. Amherst, Massachusetts: 2004, 286–293
Sun X M, Yao A C. On the quantum query complexity of local search in two and three dimensions. In: Proceedings of 47th Annual IEEE Symposium on Foundations of Computer Science. Berkeley, CA: 2006, 429–438
Shi Y Y. Lower bounds of quantum black-box complexity and degree of approximating polynomials by influence of Boolean variables. Information Processing Letters, 2000, 75(1–2):79–83
Hoyer P, Neerbek J, Shi Y Y. Quantum complexities of ordered searching, sorting, and element distinctness. Algorithmica, 2002, 34(4): 429–448
Long G L, Zhang W L, Li Y S, et al. Arbitrary phase rotation of the marked state can not be used for Grover’s quantum search algorithm. Commun. Theor. Phys., 1999, 32(3): 335–338
Long G L, Li Y S, Zhang W L, et al. Phase matching in quantum searching. Phys. Lett. A, 1999, 262: 27–34
Long G L, Tu C C, Li Y S, et al. An S0(3) picture for quantum searching. Journal of Physics A, 2001, 34: 861–866. See also in e-print quant-ph/9911004
Long G L. Grover algorithm with zero theoretical failure rate. Phys. Rev. A, 2002, 64(2): 022307
Grover L K. Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett., 1998, 80(19): 4330–4332
Boyer M, Brassard G, Hoyer P, et al. Tight bounds on quantum searching. In: Proceedings of the Fourth Workshop on Physics and Computation. New England: Complex Systems Institute, 1996, 36–43. See also in e-print quant-ph/9605034
Brassard G, Hoyer P, Mosca M, et al. Quantum amplitude amplification and estimation. AMS Contemporary Mathematics Series, eds. S. J. Lomonaco and H. E. Brandt, AMS(Providence), 2002, 305: 53–84. See also in e-print quant-ph/0005055
Long G L, Xiao L and Sun Y. Phase matching condition for quantum search with a generalized quantum database. Phys. Lett. A, 2002, 294: 143–152. See also in e-print quant-ph/0107013
Biron D, Biham O, Biham E, et al. Generalized Grover search algorithm for arbitrary initial amplitude distribution. Lecture Notes in Computer Science, 1999, 1509: 140–147. See also in e-print quart-ph/9801066
Shang B. Query complexity for searching multiple marked states from an unsorted database. Commun. Theor. Phys. 2007, 48(2): 264–266. See also in e-print quart-ph/0604059
Biron E, Biham O, Biron D, et al. Analysis of generalized Grover quantum search algorithms using recursion equations. Phys. Rev. A, 2001, 63(1): 012310
Zalka C. A Grover-based quantum search of optimal order for an unknown number of marked elements. e-print quart-ph/9902049
Han Q Z, Sun H Z. Group theory. Beijing: Peking University Press, 1987
Long G L, Sun Y. Efficient scheme for initializing a quantum register with an arbitrary superposed state. Phys. Rev. A, 2001, 64(1): 014303
Hoyer P. Arbitrary phases in quantum amplitude amplification. Phys. Rev. A, 2000, 62(5): 052304
Long G L, Li Y S, Zhang W L, et al. Dominant gate imperfection in Grover’s quantum search algorithm. Phys. Rev. A, 2000, 61(4): 042305
Niwa J, Matsumoto K, Imai H. General-purpose parallel simulator for quantum computing. Phys. Rev. A, 2002, 66(6): 062317
Shenvi N, Brown K R, Whaley K B. Effects of a random noisy oracle on search algorithm complexity. Phys. Rev. A, 2003, 68(5): 052313
Li D F, Li X X, Huang H T, et al. Invariants of Grovers algorithm and the rotation in space, Phys. Rev. A, 2002, 66(4): 044304
Li D F, Li X X. More general quantum search algorithm Q = − I γ VI τ U and the precise formula for the amplitude and the non-symmetric effects of different rotating angles. Phys. Rev. A, 2001, 287:304–316
Wu X D, Long G L. Verifier-based algorithm for unsorted database search problem. Int. J. Quant. Inf. (to appear)
Chi D P, Kim J. Quantum database search with certainty by a single query. Chaos Solitons Fractals, 1999, 10: 1689–1693. See also in e-print quant-ph/9708005
Long G L. General quantum interference principle and duality computer. Commun. Theor. Phys., 2006, 45(5): 825–844
Gudder S. Mathematical theory of duality quantum computers. Quantum Information Processing, 2007, 6(1): 49–54
Long G L. Mathematical theory of duality computer in the density matrix formalism. Quantum Information Processing, 2007, 6(1): 37–48
Deutsch D. Quantum computational networks. Proc. R. Soc. Lond. A, 1989, 425: 73–90
Barenco A, Bennett C H, Cleve R, et al. Elementary gates for quantum computation. Phys. Rev. A, 1996, 52(5): 3457–3467
Gudder S. Duality quantum computers and quantum operations. University of Denver, 2006, M06/11
Grover L K. Fixed-point quantum search. Phys. Rev. Lett., 2005, 95(15): 150501
Li D F, Li X R, Huang H T, et al. Fixed-point quantum search for different phase shifts. Phys. Lett. A 2007, 362(4): 260–264
Long G L and Liu Y. Duality mode and recycling computing in a quantum computer. to be submitted
Wang W Y, Shang B, Wang C, et al. Prime factorization in the duality computer. Commun. Theor.Phys., 2007, 47(3): 471–473
Bennett C H, Bernstein E, Brassard G, et al. Strengths and weaknesses of quantum computing. SIAM J. Comput., 1997, 26(5): 1510–1523
Guo H, Long G L, Sun Y. Effects of imperfect gate operations in Shor’s prime factorization algorithm. J. Chin. Chem. Soc., 2001, 48(4): 449–454
Wei L F, Li Xiao, Hu X D, et al. Effects of dynamical phases in Shor’s factoring algorithm with operational delays. Phys. Rev. A, 2005, 71(3): 022317
Zhirov O V, Shepelyansky D L. Dissipative decoherence in the Grover algorithm. Eur. Phys. J. D, 2006, 38(2): 405–408
Ai Q, Li Y S, Long G L. Influence of gate operation errors in the quantum counting algorithm. J. Comput. Sci. and Technol., 2006(6), 21: 927–932
Bruschweiler R. Novel strategy for database searching in spin Liouville space by NMR ensemble computing. Phys. Rev. Lett., 2000, 85(22): 4815–4818
Xiao L, Long G L. Fetching marked items from an unsorted database using NMR ensemble computing. Phys. Rev. A, 2002, 66(5): 052320
Long G L, Xiao L. Parallel quantum computing in a single ensemble quantum computer. Phys. Rev. A, 2004, 69(6): 052303
Long G L, Xiao L. Experimental realization of a fetching algorithm in a 7-qubit NMR Liouville space computer. J. Chem. Phys., 2003, 119(16): 8473–8481
Grover L K. Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett., 1997, 79(23): 4709–4712
Gingrich R M, Williams C P and Cerf N J. Generalized quantum search with parallelism. Phys. Rev. A, 2000, 61(5): 052313
Collins D. Modified Grover’s algorithm for an expectation-value quantum computer. Phys. Rev. A, 2002, 65(5): 052321
Protopopescu V, D’Helon C, Barhen J, Constant-time solution to the global optimization problem using Bruschweiler’s ensemble search algorithm. Journal of Physics A-Mathematical and General 2003, 36(24): L399–L407
Hsueh C C, Chen C Y, Constant-time solution to database searching by NMR ensemble computing. Fortschritte der Physik-Progress of Physics 2006, 54(7): 519–524
SaiToh A, Kitagawa M, Matrix-product-state simulation of an extended Bruschweiler bulk-ensemble database search. Phys. Rev. A 2006, 73(6): 062332
Mehring M, Muller K, Averbukh I S, et al. NMR experiment factors numbers with Gauss sums. Phys. Rev. Lett. 2007, 98(12): 120502
Pang C Y, Zhou Z W, Guo G C. A hybrid quantum encoding algorithm of vector quantization for image compression. Chinese Physics, 2006, 15(12): 3039–3043
Chen C Y, Hsueh C C. Quantum factorization algorithm by NMR ensemble computers. Applied Mathematics and Computation, 2006, 174(2): 1363–1369
Jones J A, Mosca M, Hansen R H. Implementation of a quantum search algorithm on a quantum computer. Nature, 1998, 393(6683): 344–346
Chuang I L, Gershenfeld N, Kubinec M. Experimental implementation of fast quantum searching. Phys. Rev. Lett., 1998, 80(15): 3408–3411
Vandersypen L M K, Steffen M, Sherwood M H, et al. Implementation of a three-quantum-bit search algorithm. Appl. Phys. Lett., 2000, 76(5): 646–648
Zhang J F, Lu Z H, Deng Z W, et al. NMR analogue of the generalized Grovers algorithm of multiple marked states and its application. Chinese Physics, 2003, 12(7): 700–707
Zhang J F, Lu Z H, Shan L, et al. Synthesizing NMR analogs of Einstein-Podolsky-Rosen states using the generalized Grover’s algorithm. Phys. Rev. A, 2002, 66(4): 044308
Kwiat P G, Mitchell J R, Schwindt P D D, et al. Grover’s search algorithm: an optical approach. J. Mod. Optics, 2000, 47(2–3): 257–266
Long G L, Yan H Y, Li Y S, et al. Experimental NMR realization of a generalized quantum search algorithm. Phys. Lett. A, 2001, 286(2–3): 121–126
Bhattacharya N, van den Heuvell HBV, Spreeuw RJC. Implementation of quantum search algorithm using classical Fourier optics. Phys. Rev. Lett., 2002, 88(13): 137901
Xiao L, Long G L, Yan H Y, et al. Experimental realization of the Bruschweiler’s algorithm in a homonuclear system. J. Chem. Phys., 2002, 117(7): 3310–3315
Yang X D, Wei D X, Luo J, et al. Modification and realization of Bruschweiler’s search. Phys. Rev. A, 2002, 66(4): 042305
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Long, G., Liu, Y. Search an unsorted database with quantum mechanics. Front. Comput. Sc. China 1, 247–271 (2007). https://doi.org/10.1007/s11704-007-0026-z
Received:
Issue Date:
DOI: https://doi.org/10.1007/s11704-007-0026-z