Skip to main content
Log in

Quantum probabilistically cloning and computation

  • Review Article
  • Published:
Frontiers of Computer Science in China Aims and scope Submit manuscript

Abstract

In this article we make a review on the usefulness of probabilistically cloning and present examples of quantum computation tasks for which quantum cloning offers an advantage which cannot be matched by any approach that does not resort to it. In these quantum computations, one needs to distribute quantum information contained in states about which we have some partial information. To perform quantum computations, one uses state-dependent probabilistic quantum cloning procedure to distribute quantum information in the middle of a quantum computation. And we discuss the achievable efficiencies and the efficient quantum logic network for probabilistic cloning the quantum states used in implementing quantum computation tasks for which cloning provides enhancement in performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wootters W K, Zurek W H. A single quantum cannot be cloned. Nature, 1982, 299: 802–803

    Article  Google Scholar 

  2. Dieks D. Communication by EPR devices. Physics Letters A, 1982, 92(6): 271–272

    Article  Google Scholar 

  3. Bennett C H, Brassard G. Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India. New York: IEEE, 1984, 175.

    Google Scholar 

  4. Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Review of Modern Physics, 2002, 74: 145–195

    Article  Google Scholar 

  5. Wang X B, Hiroshima T, Tomita A, et al. Quantum information with Gaussian states. Physics Reports, 2007, 448: 1–111

    Article  MathSciNet  Google Scholar 

  6. Long G L, Deng F G, Wang C, et al. Quantum secure direct communication and deterministic secure quantum communication. Frontiers of Physics in China, 2007, 2: 251–272

    Article  Google Scholar 

  7. Bužek V, Hillery M. Quantum copying: Beyond the no-cloning theorem. Physical Review A, 1996, 54: 1844–1852

    Article  MathSciNet  Google Scholar 

  8. Bužek V, Hillery M, Bednik R. Controlling the flow of information in quantum cloners: Asymmetric cloning. Acta Physica Slovaca, 1998, 48: 177–184

    Google Scholar 

  9. Bruß D, Ekert A K, Macchiavello C. Optimal universal quantum cloning and state estimation. Physical Review Letters, 1998, 81: 2598

    Article  Google Scholar 

  10. Bruß D, Macchiavello C. Optimal state estimation for d-dimensional quantum systems. Physics Letters A, 1999, 253: 249

    Article  Google Scholar 

  11. Bužek V, Braunstein S, Hillery M, et al. Quantum copying: A network. Physical Review A, 1997, 56: 3446–3452

    Article  Google Scholar 

  12. Cerf N J. Asymmetric quantum cloning in any dimension. Journal of Modern Optics, 2000, 47: 187–209

    MathSciNet  Google Scholar 

  13. Gisin N. Quantum cloning without signaling. Physics Letters A, 1998, 242: 1

    Article  MathSciNet  MATH  Google Scholar 

  14. Gisin N, Massar S. Optimal quantum cloning machines. Physical Review Letters, 1997, 79: 2153

    Article  Google Scholar 

  15. Keyl M, Werner R F. Optimal cloning of pure states, testing single clones. Journal of Mathematical Physics, 1999, 40:3283

    Article  MathSciNet  MATH  Google Scholar 

  16. Werner R F. Optimal cloning of pure states. Physical Review A, 1998, 58: 1827

    Article  Google Scholar 

  17. Duan L M, Guo G C. Probabilistic cloning and identification of linearly independent quantum states. Physical Review Letters, 1998, 80: 4999

    Article  Google Scholar 

  18. Duan L M, Guo G C. Linearly-independent quantum states can be cloned. Communications in Theoretical Physics, 1999, 31: 223

    MathSciNet  Google Scholar 

  19. Bechmann-Pasquinucci H, Gisin N. Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography. Physical Review A, 1999, 59: 4238

    Article  MathSciNet  Google Scholar 

  20. Galvão E F, Foundations of quantum theory and quantum information applications. arXiv: quant-ph/0212124.

  21. Galvão E F, Hardy L. Cloning and quantum computation. Physical Review A, 2000, 62: 022301.

    Google Scholar 

  22. Gao T, Yan F L, Wang Z X. Achievable efficiencies for probabilistically cloning the states. Journal of Physics A, 2004, 37: 3211

    Article  MathSciNet  MATH  Google Scholar 

  23. Gao T, Yan F L, Wang Z X. Probabilistic cloning and quantum computation. Chinese Physics Letters, 2004, 21: 995

    Article  Google Scholar 

  24. Gao T, Yan F L, Wang Z X. Quantum logic network for probabilistic cloning quantum states. Communications in Theoretical Physics, 2005, 43: 73

    Article  MathSciNet  Google Scholar 

  25. Lo H K, Popescu S, Spiller T, eds. Introduction to Quantum Computation and Information. Singapore: World Science, 1998

    Google Scholar 

  26. Feynman R. Simulating physics with computers. International Journal of Theoretical Physics, 1982, 21: 467

    Article  MathSciNet  Google Scholar 

  27. Shor P W. Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computers Science. 1994: 124

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengli Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, T., Yan, F., Wang, Z. et al. Quantum probabilistically cloning and computation. Front. Comput. Sci. China 2, 179–189 (2008). https://doi.org/10.1007/s11704-008-0019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11704-008-0019-6

Keywords

Navigation