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ABSTRACT We have fixed source and target schemas, an instdrafethe

) . source schema, and a mapping that specifies the relationship
We consider data exchange for XML documents: given sourde an between the source and the target schemas. The goal is toumins

]Earggt schekr]nas, a mapﬁmg between them, andda doc:lment CONan instancd of the target schema, based on the source and on the
orming to the source schema, construct a target documend@n ., 55ing and to answer queries against the target data iya wa
swer target queries in a way that is consistent with the somfor- consistent with the source data

mation. The problem has primarily been studied in the mi The mappings rarely specify the target instance compleTédigt
context, in which data-exchange systems have also been buil is, for each sources and mappingM, there could be multiple

lSlnce m%ny XML doculrngnts lare store;j in relat(;ons, LIS Natu- {arget instance§s, 7z, . . . that satisfy the conditions of the map-
': to con5|h erusing a re islthna s_ystemh %r XML data exgean ping. Such instances are callsdlutions The notion of query
owever, there Is a complexity mismatch between query aRswe 5 .q\vering has to account for their non-uniqueness. Typjcie

ing in relational and in ?(ML data exchangfe. This irjd[cateatth tries to computeertain anSWersERTAINA((Q, S), i.e., answers
to make the use of relational systems possible, restrtiave to independent of a particular solution chosen. Qfproduces re-

bﬁ in;gpsed (;]n XML schemas and mappings, as well as on XML |ations, these are usually defined @ Q(7;). Certain answers
shredding schemes. must be produced by evaluating some query — not necessarily

We isolate a set of five requirements that must be fulfilled in b ; i : :
. . ut perhaps itsewritin over a particular solutioff’, so that
order to have a faithful representation of the XML data-exaie QrewF:(T) :p CERTA|NA,?(%e§)_ p

problem by a relational translation. We then demonstrattttese
requirements naturally suggest the inlining technique data-
exchange tasks. Our key contribution is to provide shregldigo-
rithms for schemas, documents, mappings and queries, amoihde
strate that they enable us to correctly perform XML datahexge
tasks using a relational system.

Thus, the key tasks in data exchange are: (a) choosing a@-parti
ular solution7 among{71, 72, . . .} to materialize, and (b) finding
a way of producing query answers over that solution by rumain
rewritten queryQrewr OVer it. Usually one builds a so-callediiver-
sal solution [12, 8]; these solutions behave particularly lyiegth
respect to query answering.

Categories and Subject Descriptors These basics of data exchange are independent of a particula

H.2.5 [Heterogeneous Databases]: Data translation model of data. Most research on data exchange, however,chas o
curred in the relational context [12, 13, 21, 8] or slightemdions

General Terms ; ;

Algorithms, Theory [32, 18]. The first paper that attempted to extend relatiopsdilts

to the XML context was [6], and a few followups have since ap-
peared [4, 3]. They all concentrate on the algorithmic aspet
query answering and constructing solutions, with the maai of
isolating tractable cases. The problem these papers daldotss
1. Introduction is how can XML data exchange be implemefted
Previous work on algorithms for XML data exchange has tacitl

In the problem of data exchange, given an instance of a sourceassumed that one uses a native XML DBMS such as [19]. How-
schema and a schema mapping, which is a specification of the re ever, this is not the only (and perhaps not even the most carhmo
lationship between the source and the target, the objeitive route: XML documents are often stored in relational DBMSsteN
find an instance of a target schema. The target instancedshoul that it is natural and in many cases desirable to be able tthese
correctly represent information from the source instammen the established relational technology to solve the considgrabre re-
constraints imposed by the target schema, and should aheviam cent and not as well understood XML data-exchange task.cln fa

Keywords
Data Exchange, XML, XML Shredding, Inlining

evaluate queries on the target instance in a way that is seaiin many ETL products claim that they handle XML data simply by
consistent with the source data. The problem has receivet atu producing relational translations (known stsredding[22]). This
tention in the past few years, with several surveys alreadiable leads to a two-step approach:
[21, 9, 8]. _ _ _

The general setting of data exchange is this: o first shred XML data into relations;

] e then apply arelational data-exchange engine (and pulbiéesh t
ﬁ mappingM ﬁ queryQ result back as an XML document).
E—
- - The approach seems very natural, but the key question ishehet

it will work correctly That is, are we guaranteed to have the same




result as we would have gotten had we implemented a native XML [15, 27]) are strictly more expressive than relational {gake the

data-exchange system? We answer this question in this.paper

To state more precisely the main question addressed inaperp
assume that we have a translatiof) that can be applied to (a)
XML schemas, (b) XML documents, (c) XML schema mappings,
and (d) XML queries. Then the concept adrrectnessof such a
translation is shown below:

XML : sourceS W» target7 M answer
shred shred shred
Relations :  o(S) oM | o(T) o(@Q), answer

That is, suppose we start with an XML documéhand an XML
schema mapping\. In a native system, we would materialize
some solutior?” over which we could answer queri€s

But now we want a relational system to do the job. So we shred

S into o(S) and then apply te(S) the translation of the mapping
o(M) to get a solution — which itself is a shredding of an XML
solution — so that the answer € could be reconstructed from the
result of the query (Q) over that relational solution.

The idea seems simple and natural on the surface, but stakts |
ing challenging once we look deeper into it. Before evermating
to show that the relational translation faithfully repnetsehe XML
data-exchange problem, we need to address the following.

Complexity mismatch Without restrictions, thereannot be a
faithful representatiof XML data exchange by a relational
system. Indeed, it is well known that positive relational-
algebra queries can be efficiently evaluated in relatioatd d
exchange [12, 21, 8]. At the same time, finding query an-
swers even for simple XML analogs of conjunctive queries

Related-Work section for a discussion.

This restriction suggests a relational representatioso Going
with the edge representation [14] is problematic: Firscheadge
in an XML pattern used in a mapping will result in a join in the
relational translation, making it inefficient. Second,@nfng even
a simple schema structure under that representation takast of
the class of target constraints that relational data-exghaystems
can handle. Verifiably correct translations based on nuwaken-
codings [30, 33] will necessarily involve numerical anddodering
constraints in relational translations of mappings, aiglithsome-
thing that relational data exchange cannot handle at theanbm
[21, 8], beyond simple ordering constraints [2].

One translation scheme however that fits in well with theriest
tions identified in [6, 4, 3] is th@lining scheme. It works very well
for DTDs of the “right” shape, and its output schemas invaagy
acyclic constraints, which is perfect for data-exchangmados.

Desiderata for the translation We now formulate some basic re-
quirements for the translatian, in order to be able to achieve our
goals described in the diagram abdwale need the following:

Requirement 1. translation of schemas A translations (D) that,
when applied to a DTD of a special form, produces a rela-
tional schema that has only acyclic constraints, which @n b
used in a relational data-exchange setting.

Requirement 2: translation of documents A translation op(-)
for a DTD D that, when applied to documeiitconforming
to D, produces relational database (7") of schemar (D).

Requirement 3: trandation of queries For a DTD D, a trans-
lation op(Q) of (analogs of) conjunctive queries so that
op(Q)(opn(T)) = Q(T) (that is, the result of)(T") can
be computed by relational translations).

can be coNP-hard [6]. So any claim that a relational data- Requirement 4: translation of mappings For a mappingM be-
exchange system correctly performs XML data exchange for tween a source DTDD, and a target DTDDy, its trans-
arbitrary documents and queries is bound to be wrong. We lation o (M) is a mapping betweest(D;) ando(Dy) that
thus need to identify the cases that can be handled by a rela- preserves universal solutions. That is:

tional system.

Which shredding scheme to uséhere are several, which can
roughly be divided into two groups: those that do not take
the schema information into account (e.g., the edge repre-
sentation [14], interval codings [33], and other numbering
schemes [30]), and those that are based on schemas for XML, Requirement 5: query answering For (analogs of) conjunctive
such as variants of the inlining technique [28, 22]. Since in queries over trees, computing the answaptonderM over
data-exchange scenarios we start with two schemas, it seems a source tred’ is the same as computinged M )-solution
more appropriate to apply schema-based techniques. of o(T), followed by evaluation o&(Q) over that solution,

Target constraintsin relational data exchange, constraints in tar- as is normally done in a relational data-exchange system.
get schemas are required to satisfy certain acyclicity ieond
tions; without them, the chase procedure that constructs a
target instance does not terminate [12, 21, 8]. Constraints
imposed by general XML schema specifications need not in
general be even definable in relational calculus, let al@ne b
acyclic [20]. We thus need to find a shredding technique that
enables us to encode target schemas by means of (:onstraintgi
that guarantee chase termination.

(a) Eachop,-translation of a universal solution fa@r under
M is a universal solution far o (7") undero (M); and

(b) Each universal solution farp, (T') undero (M) containg
aop,-translation of a universal solution @f underM.

Satisfaction of these five requirements would guaranteewba
have acorrect relational translation of an XML data-exchange
problem, which would guarantee correct evaluation of qagerhe
relational approach to XML data exchange, which we propaose i
this paper, satisfies all the five requirements.

For the choice of the query language, one has to be careful
nce the definition of certain answers depends on the owtput
the queries. We consider two classes of conjunctive queries
trees. The first is tree patterns that output tuples of atibalues.
These are the queries most commonly considered in XML data ex
change [6, 4, 3], because for them we can define certain assser

As for the complexity issue, the work on the theory of XML
data exchange has identified a class of mappings for whidiegfti
query answering is possible [6, 4, 3]. The schemas (say, PTDs
have rules of the formalb — book™, book — author® subject
(we shall give a formal definition later), and the mappings$-
form patterns satisfied over the source into patterns satisfver
targets. Observe that these mappings (just as nestetnalaigds

LIn the next sections we formalize each desideratum.

2\We cannot require the equivalence, as relational solutiomepen

to adding new tuples and thus cannot always be translatibns o
trees; we shall discuss this later.



the usual intersectionERTAINM (Q, S) =N, @(Z:). The second
is a simple XML-to-XML query language, in which queries outtp
trees It is essentially the positive fragment of FLWR expression
of XQuery [31]. For outputs which are XML trees, the intersec
tion operator is no longer meaningful for defining certaiswaers.
Instead, we use recent results of [11] that show how to defide a
compute certain answers for XML-to-XML queries.

Contributions We provide a relational approach to solve two of
the most important problems of XML data-exchange settinggs:
terializing solutions and answering queries. Our specditticbu-
tions are as follows. First, we introduce an architecturexviL
data exchange using relational vehicles, with a focus orecor
evaluation of (analogs of) conjunctive queries on XML d&bac-
ond, we identify a class of XML schema mappings and a shrgddin
mechanism that allows us to overcome the complexity mismatc
Third, we provide algorithms for relational translationszshemas,

2. Prediminaries

Relational schemas and constraints. A relational schemaor
justschemais a finite seR = { Ry, ..., Rx} of relation symbols,
possibly with a set of integrity constraintdgpendencigs Con-
straints used most often in data exchange are equality-gte-t
generating dependencies [12, 21, 8], but for our purposeslit
suffice to consider onlkeysandforeign keys If R is a relation
over attributes/, and X is a set of attributes, theX is a key
of R if no two tuples of R coincide onX -attributes (that is, for
all tuplesty,t2 € R with t; # t2 we haverx (t1) # mx (t2)).

If Ry and R2 are relations over sets of attributeés and Us, re-
spectively, then an inclusion constraiR [X] C R»[Y], where
X C U; andY C U, are of the same cardinality, holds when
mx(R1) C my(Rz2). We further say that a foreign key on the at-
tributes of R1[X] Crx R2[Y] holds if the inclusion constraint
R1[X] C R:[Y] holds, andY” is a key ofR;.

XML documents, schema mappings, and queries in our proposed ~With each set of keys and foreign keys, we associate a graph in

architecture. Finally, we prove the correctness of thestedions:
namely, we show that they satisfy the above five requiremants
thus enable us to use relational data-exchange systemsMar X
data-exchange tasks. Since the computational complekiouo
proposed algorithms is quite low, and their correctnesshiezs
established, we believe this paper makes a case for usingltie
tional technology for provably correct XML data exchange.

Related work In recent years, significant effort has been devoted to
developing high-performance XML database systems, andikd-b

ing tools for data exchange. One major direction of the XMbf

is the “relational approach,” which uses relational DBM&store
and query XML data. Documents could be translated into rela-
tional tuples using either a “DTD-aware” translation [28] &r a
“schemaless” translation. The latter translations ineltite edge
[14] and the node [33] representations of the data. Indemaklc
be prebuilt on the data to improve performance in relatiopary
processing, see, e.g., [30, 33]. Constraints arising itrémeslation
are sometimes dealt with explicitly [7, 23]. See [17] for avay of

the relational approach to answering XML queries.

The work on data exchange has concentrated primarily on re-

lations, see [8, 21] for surveys and [26, 27] for system dpscr
tions. Mappings for the XML data-exchange problem wereistlid

in [6, 4]; it was noticed there that the complexity of manyk&ss
in XML data exchange is higher than for their relational agal
which suggests that restrictions must be imposed for aioakit
implementation. The problem of exchanging XML data was also
studied in [15, 27], which give translations of documentd af
DTDs into nested-relational schemas, and then show howrto pe
form XML data exchange under this translation. Most RDBMSs,
however, do not provide support for nested-relational s and,
thus, specific machinery has to be developed in order to imple
ment this translation under a strictly relational settihdpreover,
XML mappings considered in this paper are strictly more esgpr
sive than nested-relational mappings, and every nestatioreal
data-exchange setting can be efficiently transformed imtecguiv-
alent XML data-exchange setting. Thus, the results of thjsep
may aid towards the development of a relational implemantat
for both XML and nested-relational data exchange.

Outline Key definitions are given in Section 2. Section 3 provides
translations of schemas and documents, and shows thatutfidly f

which we put an edge between attributeand B if there is a con-
straintR:[X] Crk R2[Y]with A € X andB € Y. If this graph
is acyclic, we say that the set of constraintaéyclic A schema
is acyclic if its constraints are acyclic. In data excharayes often
uses a more technical notion of weak acyclicity: it includeme
cyclic schemas for which the chase procedure still terremafor
us, however, the simple concept of acyclicity will suffice, aur
translations of schemas only produce acyclic constraints.

XML documents and DTDs Assume that we have the follow-
ing disjoint countably infinite setsE'l of element namesAtt of
attribute names, an@tr of possible values of string-valued at-
tributes. All attribute names start with the symisl

An XML treeis a finite rooted directed tréE = (N, G), where
N is the set of nodes and is the set of edges, together with

1. alabeling functiom\ : N — EI;

2. attribute-value assignments, which are partial fumstio
paaq : N — Str for eachQa € Att; and

3. an ordering on the children of every node.

A DTD D over El with a distinguished symboal (for the root)
and a set of attributedtt consists of a mapping’» from El to
regular expressions ovéfl — {r}, usually written as productions
¢ — eif Pp(f) = e, and a mappingdp from El to 2 that as-
signs a (possibly empty) set of attributes to each elemeet tifor
notational convenience, we always assume that attribate® én
some order, just like in the relational case: attributesipids come
in some order, so we can wrife(as, ..., a»). Likewise, we shall
describe aff labeled tree node with attributes ag(az, ..., an).

AtreeT conforms to a DTDD (written asT” = D) if its root is
labeledr, the set of attributes for a node labeleid Ap (¢), and the
labels of the children of such a node, read from left to rifgrm a
string in the language dPp (¢).

A class of DTDs In this paper we consider a restriction on DTDs
called nested-relational DTD$1, 6], a class of DTDs that natu-
rally represent nested relational schemas such as the eadsy
the Clio data-exchange system [26]. The reason for using ike
that outside of this class, it is very easy to construct imsga of
XML data-exchange problems that will exhibit coNP-hardnet
answering conjunctive queries (which are known to be ttdetim
practically all instances of relational data exchange),[6g

our Requirements 1 and 2. Section 4 states the main concepts o A DTD D isnon-recursivef the graphG(D) defined a{ (¢, ¢') |

relational and XML data exchange. Section 5 provides teditsis

¢ is mentioned inP(¢)} is acyclic. A non-recursive DTID is

of mappings and queries, and shows that our Requirements 3, 4 nested-relationalf all rules of D are of the formi — Iy...lm

and 5 are fulfilled. Section 6 studies queries that output XMEs.

where all thel;’s are distinct, and each is one ofl; and l;.



1ir

/\

2: book 3: book . — book
Al'gorithm Design Al gebra book —  author™ subject
/ \ author —  name aff
4: author 5: author 6: subject 7-author  8: subject Ap(book = Qtitle
cs Mat h Ap(subject) = Qsub
/ \ / \ / \ Ap(name) = Qnam
9: name 10: aff 11: name 12: aff 13: name 14: aff Ap(aff) = Qaff
Kl ei nberg CU Tardos Ccu Hungerford SLU
(a) TreeT’ (b) DTD D

Figurel: TheXML treeT conformsto D

From now on, unless otherwise noted, all DTDs are assumee to b " pProcedure INL SCHEMA( D)

nested-relational. We also assume, without loss of getherdilat
the graphG(D) is not a directed acyclic graph (DAG) but a tree.
(One can always unfold a DAG into a tree by tagging occurrence
of element types with the types of their predecessors.)

EXAMPLE 2.1. Figure 1(a) shows an example of an XML tree.
In the Figure, the node identifiers precede the correspgrdirels
of each node ifT’; we omit the attribute names and only show the
attribute values of each node. In addition, Figure 1(b) shaw
example of a nested-relational DTD. Moreover, it is easyde s
that the tredl” of Figure 1(a) conforms t®. O

3. Trandations of schemas and documents

We now review theinlining technique [28], provide a precise
definition of the translation, and show that it satisfiesRaquire-
ments 1 and2. The main idea of inlining is that separate relations
are created for the root and for each element type that appear
der a star, and other element types are inlined in the rektor-
responding to their “nearest appropriate ancestor”. Eafdtion
for an element type has an ID attribute that is a key, as wefloas
non-root) a “parent-ID” attribute that is a foreign key piirg to the
“nearest appropriate ancestor” of that element in the decnAll
the attributes of a given element type in the DTD becomebaltieis
in the relation corresponding to that element type when suxh
lation exists, or otherwise become attributes in the refator the
“nearest appropriate ancestor” of the given element type.

We begin with a formal definition of theearest appropriate an-
cestorfor the element types used . Given a nested-relational
DTD D = (Pp,Ap,r), we “mark” in G(D) each element type
that occurs under a star Bp. In addition, we mark the root ele-
ment type inG(D). Then, for a given element tygewe define the
nearest appropriate ancestaf ¢, denoted byu(¢), as the closest
marked element typé in the path from the root element £an the
graphG(D). The inlining schema generation is formally captured
by means of the procedurelll SCHEMA below.

EXAMPLE 3.1. Consider again DTDD in Figure 1(b). The
relational schemaNL SCHEMA(D) is as follows:
R.(11D)
Ruook(bookI D, @i tle,rlD, subl D, @ub)
Rauthor (AUt hI D, book! D, nanel D, af | D, @am @f f)

Keys are underlined; we also have the following foreign
keys: Rpook(rID) Crx R, (rID) and Rgythor(bookID) Cri
Rypook (bookID). O

The following shows that ouRequirement 1 is satisfied.

PROPOSITION 3.2. For every nested relational DT, the
output ofINLSCHEMA(D) is an acyclic relational schema.

Input : A nested relational DTD.
Output: A relational schem& » and a set of integrity
constraintsA p

SetSp =@ andAp =0
for each marked element typeof D:
add toSp arelationR,, with attributes:

idy
Ap(£)
attr(Re) = ¢ idue) | ifLF#T
idgy | () =¢, ¢ isnot marked,
Ap(€) | (') =4, ¢ isnot marked.
endfor

for each relation R, in Sp:
add toA p the constraint stating thadl, is key of R, and,
if £ # r, the foreign key

Relid,oy) Crr Ry lidue).
endfor
add toA p the dependency (stating the uniqueness of the root)

VVZR-(z,9) A Ry (2',2) — 2 =2’
return (Sp, Ap)

PROOF Let D be a DTD over a set of element typ&8. No-
tice that all the foreign key constraints created with thecpdure
INLSCHEMA(D) are of the formR[id,, )] Cri R liduce),
for some marked label € EI; that is, each relatiork, refer-
ences the relatiof®,, ;) that corresponds to theearest appropri-
ate ancestoof ¢. Thus, the graph associated with the constraints
of INLSCHEMA(D) only contains edges from the attribuié, )
of relation R, to attributeid,,(,y relationRz,, ). The proof then fol-
lows from the fact thatG(D) is acyclic, and thus the labels &f
cannot form a cycle of nearest appropriate ancestors.

Shredding of XML documents. We now move to the shredding
procedure. Given the inliningNiL SCHEMA(D) = (Sp,Ap) of a
DTD D, and an XML tre€l’ conforming toD, we use the algo-
rithm INLDoc to shredT into an instance of the relational schema
Sp that satisfies the constraints lp. Let us first explain this
translation by means of an example.

ExampPLE 3.3. Recall tre€l’ from Figure 1(a) and DTDD
from Figure 1(b). Figure 2 shows relatiofi&ook and R author iN
the shredding of". O

To present the algorithm, we define thearest appropriate an-
cestoru(n) of a noden of an XML document!” that conforms to
a DTD D, as follows. Mark each node of T such that\(n) is
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ida Al gorithm Design idy ide Cs . . . . , ,

id- " Al gebr a’ id id Mat h ids ido id11 id12 Tar dos Ccu
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(a) RelationReoox in INLDOC(T, D)

(b) RelationRquthor in INLDOC(T, D)

Figure2: Shredding of T"into INLSCHEMA(D)

starred inD, as well as the root of". Thenu(n) is the closest
marked node:’ that belongs to the path from the rootsto In the

following algorithm, and for the remainder of the paper, veaate

by id,, the relational element representing the nadsf a treeT".

ProcedureINLDOC( T, D)
Input : A nested relational DTD and an XML tre€l” that
conforms toD.
Output: A relational instance of the schemauUSCHEMA(D).

for each marked node: of T':
Let /£ be the label of; Add to the relationR, of I a tuple
that contains elements

idn

paa(n) | @a€ Ap(f)

idu(n) | if ¢ 75 T

idy | wp(n') =n,n'is not marked.
paa(n’) | wp(n')=n,Qac Ap(A(n’))and

n’ is not marked
where the identifiers and attributes values for each of the
elementsd,,, id,(,) andpaa(n’) coincide with the
position of the attributes faid ..y, id, ) and
Ap(X(n)) of Ry.
endfor
return

The following proposition shows that oRequirement 2 is sat-
isfied.

ProPOSITION 3.4. Let D be a DTD, andl’ an XML tree such
thatT = D. ThenINLDOC(T, D) is an instance of the schema
computed byNLSCHEMA(D).

PROOF Let D and T as stated in the Proposition, and
(Sp, Ap) be the output ofNiL SCHEMA(D). That INLDOC(T', D)
satisfies the key constraints Afp is trivial, since the identifier of
each node irl" is unique. The same applies for the dependency
stating the uniqueness of the root; siiceonforms toD, the root
of T (and only the root) must be labelled Moreover, for each
foreign key inA of the form Re[id, )] € Ry [id, e, notice
that, sinceG(D) is a tree, for eacli € El — {r}, there is exactly
one element’ such tha?’ = p(¢). SinceT conforms toD, every
(-labelled node ifl" must be a descendant of dnlabelled node.
This guarantees that the interpretation of relatidhsand R, in
INLDOC(T, D) satisfy the constraini,[id,.)] € Rue)lidue)):
each tuple in the interpretation @&, over INLDoOC(T, D) corre-
sponds to a node in 7" that must be a descendant of &rtabelled
noden’ in T, and thus there must be a tuple in the interpretation of
R, identified with the elemenid,,,. O

4. Reational and XML Data Exchange

We now quickly review the basics of relational data exchange

and introduce XML schema mappings that guarantee tractable

query answering.

Relational Data Exchange A schema mappingM is a triple

(S, T,X), whereS is a source schem& = (T, Ar) is a target
schema with a set of constrainds;, andX is a set ofsource-to-
target dependenciahat specify how the source and the target are
related. Most commonly these are given as source-to-tangé
generating dependencies (st-tgds):

p(T) — 32Y(z, 2), @)

wherey andt are conjunctions of relational atoms o&andT,
respectively.

In data-exchange literature, one normally considers im&s
with two types of values: constants and nulls. Instar§ed the
source schem8 consist only of constant values, and nulls are used
to populate target instanc€swhen some values are unknown.

Aninstance7 of T (which may contain both constants and nulls)
is called asolutionfor an instanceS of S under M, or an M-
solution if every st-tgd (1) fronk is satisfied by S, 7) (that s, for
each tuples such thatp(a) is true inS, there is a tuplé such that
(@, b) is true in7"). The set of allM-solutions forS is denoted by
SoLm(S) (or SoL(S) if M is understood).

Certain answersand canonical universal solution The main dif-
ficulty in answering a query) against the target schema is that
there could be many possible solutions for a given sourcaus;Th
for query answering in data exchange one normally uses ti@no
of certain answers, that is, answers that do not depend orieupa
lar solution. Formally, for a sourcg and a mapping\1, we define
CERTAINAM (Q, S) as({Q(7T) | T € SoLm(S)}-

Building all solutions is impractical (or even impossihlep it
is important to find a particular solutioh, € SoLa(S), and a
rewriting Qrewr of @, 0 thatcERTAINA(Q, S) = Qrewr(70).

Universal solutionsvere identified in [12] as the preferred solu-
tions in data exchange. (We provide a precise definitiom iatis
section.) Over them, every positive query can be answerih,av
particularly simple rewriting: afte) is evaluated on a universal so-
lution 7y, tuples containing null values are discarded. Even among
universal solutions there are ones that are most commonig-ma
rialized in data-exchange systems, such asctmnical solution
CANSOL(S), computed by applying the chase procedure with
constraintss andAr to the source instance®. If all the constraints
in At are acyclic (in fact, even a weaker notion suffices), such a
chase terminates and computesNSoL 4 (S) in polynomial time
[12].

Note that ouRequirement 4 relates universal solutions in rela-
tional and XML data exchange. In particular, we do not ineist
working with the canonical solutions; others, such as ttre 3]
or the algorithmic constructions of [25], can be used as.well

Towards XML schema mappings:. patterns To define XML
schema mappings, we need the notions of schemas and source-t
target dependencies. The notion of schema is well undetstoo
the XML context. Our dependencies, as in [6, 4, 3], will bedths
ontree patternsPatterns are defined inductively as follows:

e ((Z) is a pattern, wheré is a label, andz is a (possibly
empty) tuple of variables (listing attributes of a node);



e ((Z)[m1,..., ] is a pattern, where, . .., 7, are patterns,

and/ andz are as above.

We writer (Z) to indicate that is the tuple of all the variables used
in a pattern. The semantics is defined with respect to a node of
tree and to a valuation of all the variables of a pattern agate
values. Formally(T', v) = w(a) means thatr is satisfied in node

v whenz is interpreted as. It is defined as follows:

o (T,v) = £(a) if vis labeled? and its tuple of attributes i,
] (T7 U) 'I ((a)[ﬂ'1(a1)7 e ,Wk(ak)] if

1. (T,v) = ¢(a) and
2. there exist childreny, . . ., vx of v (not necessarily dis-
tinct) so that(7', v;) = m;(a.) for everyi < k.

We writeT = w(a) if (T,r) E «w(a), that is, the pattern is wit-
nessed at the root.

EXAMPLE 4.1. Consider tre& from Figure 1(a), and the tree
patternw(z,y) = r[book(x)[author[name(y)]]], which finds
books together with the names of their authors. Then it iy eas
to see thatl’ = =(' Al gorithm Design’, Tardos). In fact,
evaluation ofr(x,y) over T' returns the tuples’ @ gorithm
Desi gn’, Tardos), ( Al gorithm Design', Kl einberg), and
( Al gebra’ ,Hungerford). O

Given a DTDD and a tree patterm, we say thatr is compatible
with D if there exists a tre& that conforms taD and a tuple of
attribute values: such thatl’ = = (a). In general, checking com-
patibility of patterns with DTDs is NP-complete [10], butrfthe
DTDs we consider here it can be easily done in polynomial time

ExAMPLE 4.2.[Example 4.1 continued] The patterifz, y) is
compatible with the DTDD of Figure 1(b). On the other hand, the
patternz’(z) = r[author(x)] is not, because no tree consistent
with D can have a child of labeled aswuthor, or anauthorlabeled
node with an attribute 0

a tupleb of attribute values frorf” such thatl” satisfiest’(a, b).
The set of allM-solutions forT" is denoted by 8L (T').

EXAMPLE 4.3. Consider the data-exchange scenario
(D, Dy, M) given by the DTDsD and Dr of Figures 1(b) and
3(b), respectively, and wherkt is specified by the dependency

r[book(z)[author[name(y)]]] —

rlwriter[name(y), work(z)]],

that restructures book-author pairs as writer-work. Itlsarshown
that the XML treel” in Figure 3(a) is anM-solution for7. O

We now formally define universal solutions. While building u
auxiliary definitions that are needed to define the term, \ge al
introduce some technical notions that will be used throinghre-
mainder of the paper.

Homomor phisms and tree homomorphisms. Let K; and K,
be instances of the same scheRiaA homomorphisnk from K
to K is a functionh defined from the domain ak; to the do-
main of K such that: (1)x(c) = ¢ for every constant element
in K1, and (2) for everyR € R and every tupl& = (a1, ...,ax)
in the relationR in K, it holds thath(a) = (h(a1),...,h(ak))
belongs to the relatio® in K>. Notice that this definition of ho-
momorphism slightly differs from the usual one, as the aoétl
constraint that homomorphisms are the identity on the emistis
imposed.

Given a conjunctive quer§)(z) over a schem®, we denote by
I(z) the instance oR constructed as follows: for every relational
symbol R € R and relational atonR(b) occurring inQ(z), we
include tupleb in the relation of I(z). We define all variables
in z to be constant elements iig(5), whereas every existentially
quantified variable of) is a null element.

It is now straightforward to prove the following lemma:

LEMMA 4.4. LetT be an instance of scheni&, andQ a con-

RemarkMore general patterns have been considered in the liter- junctive query.Then, a tuple of constant elements belongs to the

ature [5, 24, 10, 4, 3]; in particular, they may involve dextant
navigation, wild cards for labels, and sibling order. Hoe\6,

4, 3] showed that with these features added, query answering
data exchange becomes intractable even for very simpléeguén
fact, the restrictions we use in our definition were identifiie [6]

as essential for tractability of query answering. Note thatsame
restriction was imposed on queries when transforming XMtada
into nested-relational schemas [15, 27].

XML schema mappings As our descriptions of XML schemas we
shall use DTDs. Indeed, for complex schemas, query ansgverin
in data exchange is known to be intractable [6], and DTDs will
suffice to capture all the known tractable cases. Sourcartmt
constraints will be given via patterns.

Formally, an XML schema mappings a triple M =
(Ds, Dr,Y), where Dg is the source (nested relational) DTD,
Dr is the target (nested relational) DTD, ahdis a set ofXML
source-to-target dependencif, or XML stds, of form

(@) = '(2,2), @
wherer and#’ are tree patterns compatible withs and Dr, re-
spectively.

As inthe relational case, target trees may contain nulls¢oant
for values not specified by mappings. Given a ffeat conforms
to Dg, atreel” (over constants and nulls) is & -solution forT if
T’ conforms toDr, and the paifT, T") satisfies all the dependen-
cies of the form (2) fron®. The latter means that for every tuple
a of attribute values fronT", if T satisfiesr(a), then there exists

evaluation ofQ over if and only if there is a homomorphism from
IQ(@) tol.

We also need to introduce the equivalent definition of hommemo
phisms for XML trees, otree homomorphisi6]. LetT = (N, G)
andT’ = (N’,G’) be XML trees, letr, andn;. be the roots of”
andT", respectively, and leStr(T) = {s € Str | there exists
n € N and@a € Att such thatpe.(n) = s}, Str(T") defined
correspondingly. Therp : N U Str(T) — N’ U Str(T") is a
homomorphism fron¥" to 77, if:

e foreveryn € N, h(n) € N’;

for every constant elemente Str(T"), h(s) = s, and for
every nulls € Str(T), h(s) € Str(T");

h(n;) = n,;

for everyni,ns € N, if G(n1,n2), thenG’' (h(n1), h(n2));

for everyn € N, Ar(n) = Ar (h(n)); and

o foreveryn € N and@Qa € Att such thapa,(n) is defined,
h(paa(n)) = paa(h(n)).

Given a tree pattermr(z), we construct the treé’. ;) induc-
tively: if 7(z) = £(z)[m1(Z1), ..., 7k(Zk)], then the root off . )
is a node labelled, with attributesz, andk children correspond-
ingtoT%, (z,),---,Tr.(5,)- AS for the relational case, it is easy to
prove the following lemma:
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LEMMA 4.5. LetT be an XML treerr(Z) a tree pattern, and
a tuple of values irtr. Then,s € «(T) if and only if there is a
homomorphism frorif’; ) to T'.

Universal Solutions. By means of homomorphisms, we give a
precise definition of universal solutions in relational dviX data
exchange settings. Formally, I8, T, M) be a relational data ex-
change setting. Then, given an instadaaf S, we say that ao\V-
solutionJ for I is anM-universal solution fol if for every other
M-solutionJ’ for I, there exists an homomorphism frafito J’
[12]. The definition for the case of XML data exchange setting
is analogously formulated using the notion of tree homorhism

[6].

5. XML data exchange using relations

We now provide algorithms for implementing XML data ex-
change via relational translations. Since we have alreadwis

how to translate DTDs and documents, we need to present trans

lations of stds of mappings and queries. Both of them aredbase
on translating patterns into relational conjunctive geeriWe first
concentrate on that translation. Then we show how to extend i
easily to mappings and queries, and prove the correctneig of
translations. This will complete our program of using a tielzal
system for XML data exchange in a semantically correct way.

Inlining tree patterns. The key ingredient in our algorithms
is a translation of patterns compatible with a DTDD into a
conjunctive queryNLPATTERN(7, D) over the relational schema
INLSCHEMA(D). Very roughly, it can be viewed as this:

1. View a patternt(z) as a tre€l’r in which some attribute
values could be variables;

2. Compute the relational databaseLDoc(T%, D) (which
may have variables as attribute values);

3. View INLDoOC(T, D) as a tableau of a conjunctive query;
the resulting query isSNLPATTERN(7, D).

The algorithm is actually more complicated becauseDoc
cannot be used in Step 2; we shall explain shortly why.

Towards defining NLPATTERN, observe that each tree pattern
m(z) can be viewed as an XML documefit. z, in which both
values and variables can be used as attribute values. fireden-
ductively as followsT, s is a single-node tree labelédwith z as
attribute values, and if is £(z) [71(Z1), . . . , mx (T )], then the root
of T’ is labeled? and hast as attribute values. It also haschil-
dren, with the subtrees rooted at them be€liagz,), . . . , T, (z,)-

However, even for a patterm(z) compatible with a DTDD,
we may not be able to define its inlining as the inlininglGf ;).
becausd’ 5y need not conform td. For example, if a DTD has
aruler — aband we have a patterrja], it is compatible withD,
but T, does not conform td, as it is missing &-node. Hence,
the procedureNLDoOC cannot be used ‘as-is’ in our algorithm.

Nevertheless, we can still mark the node&’of;) with respect to
D and define the nearest appropriate ancestor exactly asheleas
done previously. Intuitively, the procedursilPATTERN shreds
each node of’; z) into a different predicate, and then joins these
predicates using the nearest appropriate ancestor.

Procedure INLPATTERN( 7, D)

Input : ADTD D, atree patternr(z) compatible withD.
Output: Conjunctive query overNL SCHEMA(D).

for each nodev of T, (5 of form£(z.,):
Construct a quer®), (Z.) as follows:

if v is markedthen
Qv(fﬂu) = Hidvﬂidu(,u)EZR( (idlu To, idu(,u)7 2),

wherez is a tuple of fresh variables, and the positions
of variablesid,, Z, andid,, (., are consistent with the
attributesid,, Ap(¢) andid,,(,) respectively in
attr(Ry).
If £ =r, then@, does not useéd,, ..

else (v is not marked):
setv’:=u(v), £:=\(v"), and letQ,(z,) be

did,, Hidu(u/)}iduafRy (idl,/ s idu(u/), idy, To, 2)7

wherez is a tuple of fresh variables, and the positions
of the variablesd,, id, ), id, andz,, are consistent
with the attributesd,, id,,yy, ide and Ap (¢)
respectively inattr(R,/). If ¢ = r, then@, does not
USE’L'dM(U/).

endfor

return /\vETn@ Qv (Zv).

Note that the compatibility ofwr with D ensures that
INLPATTERN is well defined. That is, (1) every attribute formula
of the form¢(z) only mentions attributes il p (¢), and (2) for all
nodesv, v’ € Tz, if v’ is a child ofv, thenA(v') € Pp(A(v)).

Correctness.  Given a patternr(z), the evaluation ofr on a tree
Tisw(T) ={a|T E w(a)}. The following proposition shows
the correctness oNL PATTERN.

PrROPOSITION 5.1. Given a nested relational DT, a pat-
tern m compatible withD, and a treeT that conforms taD, we
haver(T) = INLPATTERN(w, D) (INLDOC(T, D)).

That s, the inlining ofr, applied to the inlining of", returnsr (7).
PROOF. The proof has two parts: First, we show (1) that
m(T) C INLPATTERN(m, D) (INLDOC(T, D))

holds, and then complete the proof by showing (2)
INLPATTERN(m, D) (INLDOC(T, D)) C 7 (T).



Part (1): To prove that
7(T) C INLPATTERN(m, D) (INLDOC(T, D)),

letw(z), D andT be as defined, so th@tconforms toD. Assume
now thata is a tuple of attribute values such thate =(7T), and
let h be the homomorphism froffi. ;) to T'. (By Lemma 4.5 is
guaranteed to exist.)

In order to show that a belongs to
INLPATTERN(7, D) (INLDOC(T, D)), we show how to construct
a homomorphismg from Iy psrrern(r,0)(a) 10 INLDOC(T', D)
(this, by Lemma 4.4, suffices for the proof). Recall that the e
ments ofljy parrern(x, D) (@) COrresponds precisely to the variables
of INLPATTERN(7, D)(a). Defineg as follows:

e For each variable of the formal, in INLPATTERN(7, D)(a),
wherev is a node ofl’; 5y, defineg(id,) = idy (),

e for eacha € g, letg(a) = h(a), and

e for each other existentially quantified variable in
INLPATTERN(7, D)(a) not of formid.,, assume that be-
longs to a predicaté?,(z) in INLPATTERN(7, D)(a). Let
id, be the variable in predicat®, (z) that corresponds to the
position of the attributéd, of relation R,, and assume that
h(v) = n, for some node: € T'. Then, as defined in the pre-
vious item,g(id,) = id,. From the definition of the inlining
procedure, we know thanLDoc(T, D) contains a fact (and
only one, since the attibutel, is a key for the relatior,)
of the form R, (id,,, b), for some tuple of elements. Define
g so that it maps the variableto the element in the position
of (id», b) that corresponds to the position thadccupies in
the predicateR,(z) in INLPATTERN(7, D)(a).

We first show thay is well defined. First, itis easy to see tlgas
defined for every element dfy parrern(s, D) (a)- YWE NOW prove that
there is no element ifyy parrern(, D) (a) that is mapped by to two
different values inliLDoc(T, D). To see this, assume for the sake
of contradiction that there is an elementin I,y pxrrern(rr, D)(a)
such thaty is defined to map to two elements ofNLDOC(T').
Then, there are three facts to consider:

e x cannot be a variable iNL PATTERN(, D)(a) of the form
id,, for some node of T’ 5), since we have definedto be
mapped tady,, only,

e x cannot belong ta, since we have defined evetiyc a to
be mapped only td(a);

e then, z is an existentially quantified variable in
INLPATTERN(7, D)(a) that is not of formid,, (that is, it is
a fresh variable generated by the procedweRATTERN).
But notice then thatr belongs to only one predicate of
INLPATTERN(7, D)(a). Moreover, as explained in the
definition of g, there is only one tuple iNLDOC(T', D) to
which z is being mapped.

We now prove thay is indeed a valid homomorphism. First, it
is easy to see that for evetye a, g(a) = a. This follows (i) from
two facts: (i) we have definegla) ash(a), and (ii) by construction
of T (), everya € a is a constant, and thuga) = a.

Consider now a fact of the form, (@) in Iy parrern(r, D) (a)-
We need to show thak,(g(w)) belongs to kLDoC(T, D). We
will assume for the sake of readability that# r. The proof
can be easily adapted for the case wlies r. From the inlin-
ing procedure for queries, there must be a nod# 775y such

that INLPATTERN adds to NLPATTERN(7, D) (@) some existential
quantification of the predicat®,(w) in the step that corresponds
to v (thatis, R¢(w) is part ofQ(a.)). We have two cases. Assume
first thatv is marked. Then,

Quv(ay) = Fid,Fid,(v)IZRe(idy, G, id (), Z),

where z is a tuple of fresh variables not used elsewhere in
INLPATTERN(7, D)(a) and the position of the variableg.,, a.
andid,,(,y coincide with the attributesd,, Ap(€) andid,, ) in
attr(Ry).

Further, we now have that the homomorphisrmaps the node
v of T to some nodeh(v) in T. Thus, from the proper-
ties of tree homomorphisms, we also know thét) has the el-
ement typel, and that for everya € a, and Qa € Att, if
paa(v) = a, thenpaq(h(v)) = a. Moreover, since homo-
morphisms must preserve the child relation, it is easy totksae
the nearest appropriate ancestorhdt) in 7' must beh(u(v)).
Then, it is clear thatNLDoOC(T', D) must contain a tuple of the
form Ry (idp vy, Gv, idh(u(v)) b), for some tuplé of elements, and
where the positions af. correspond to the attributes it (¢) of
attr(R,) wherep(v) is defined. From the definition @f, it is clear
thatg(id,u, Ay, ’idﬂ(z,)7 2) is the tuple(idh(z,), idh(y(/u)% vy, g(,?)).
The proof then follows sincg(z) is defined to bé.

Second, assume thais not marked, and that(v) = ¢, p(v) in
Tr(a) is the nodev’, andA(v') = ¢'. Then, as defined, the query
Qv (@) is of form:

Qv(av) =

where z is a tuple of fresh variables not used elsewhere in
INLPATTERN(7, D)(a), and the position of the variables, id.,,
id,(,7y anda, is consistent with the attributéd,, id,, id,, and
Ap(¢) in attr(Ry/).

Further, we know that the homomaorphigimmaps the nodes
andv’ of T} (z) to some node&(v) andh(v') in T. Then, from
the properties of tree homomorphisms, we obtain Aas$signs the
types? and ¢’ to h(v) andh(v), respectively, and that for every
a € ay, andQa € Att, if paq(v) = a, thenpaq(h(v) = a.
Moreover, since homomorphisms preserve the child relattan
easy to see thdt(v’) must be the nearest appropriate ancestor of
h(v) in T, and that the nearest appropriate ancestdi(of) must
be h(u(v')). Then, itis clear that the inlining ¢f must contain
a tuple of the formRy: (idp vy, idn(pu(v'y)» 1h (v, Gvs b) for some
tuple b of elements, where the positions @f correspond to the
attributes inAp(¢) such thatp(v) is defined. Again, the proof
follows since we have definggd z) asb.

Part (2): For the proof that
INLPATTERN(7, D) (INLDOC(T, D)) C = (T),

Jid, Jid,, vy Jidu3ZRp (idys iy, idy, Go, 2),

assume that for a tupke of constants there is a homomorphigm
from Iy parrern(x, D) (a) 10 INLDOC(T', D). We construct a homo-
morphismg from 7.5y to T'. By Lemma 4.5, this suffices for the
proof.

Defineg as follows:

e For every node of T’.(3), consider the variablé&d,, defined
in the procedureNLDoC, and assume thét(id,) = idn,
for some elemenid,, of INLDOC(T, D). Defineg(v) =
n. Notice that this is well defined: from the definition of
INLDoOC, and the properties of homomorphisms, we know
thatn must be a node of'. (Bothid, andid, occur in a
position of the predicates that corresponds to the idertifie
of the nodes in the schemauUScHEMA(D).)



e For everys € Str(T,)), letv be the node off ;5 such
thats = paa(v). Then, notice that from the definition of
the translation of patternsg, must be a free variable of the
query Q. in INLPATTERN(7, D), and thusly parrern(r, D)
contains the variable. Defineg(s) = h(s).

We now prove thay is a valid homomorphism frof’; ) to T'.
First, as mentioned in the definition gf it is clear thaty(v) € N,
for everyv € Ty (a).

Second, we prove that, ifis the root ofT’; (3, theng(v) = n.,
wheren,. is the root ofT". This follows from the fact that, since
is fully specified,m must be of formr(a)[=’]. Then, the variable
id, must be mentioned in a predicate®f of INLPATTERN(7, D).
Sinceh is a homomorphismh (id, ) must belong to a tuple iR... It
follows from the construction oiNL SCHEMA(D) and from Propo-
sition 3.4 that it must be the (unique) identifier®f, and thus the
identifier of the root node df".

Next, we prove that for every node of T (z), Ar, a)(v) =
Ar(g(v)). Assume that for a node in T (5 it is the case that
A1, (a)(v) = £. There are two cases. The claim for the case when
v is marked follows from the fact that there must be a tuple & th
interpretation of the relatio®, in INLDOC(T, D) that contains
h(idy) in its id,-attribute. Then, since mapswv to the node irll’
that corresponds ta(id,) in INLDOC(T), D), it must be the case
that \r(g(v)) = £. If v is not marked, let’ be the nearest ap-
propriate ancestor df, and consider the tuple in the interpretation
of relation R, in INLDOC(T, D) that contains the eleme#d,, in
the position that corresponds to the attribiste The proof follows
easily using the same argument as for the other case.

Assume now that two nodes , v2 of T} (5y are such that. is
a child of v1 in T(a). For the sake of readability, we shall write
Alinstead ofAz,_ ., since it will always be clear from the context.
Let then?/; = A(v1) andlz = A(v2), and assume that(id,, ) =
idpn, and h(idy,) = idn,, for some nodes;, ne of T. Thus,
g(v1) = n1, andg(v2) = m2. The proof thatg(vz) is a child of
g(v1) follows easily from the fact thag preserves the labelling of
the nodes, the grapfi(D) is a tree,r is compatible withD and
andT" conforms taD: If vz is a child ofv; in T (), then it must be
that¢, € Pp(¢1), and that/; does not appear in the production of
any other label inD. Then, since\r(n2) = ¢z andAr(ni) = 41
andT conforms toD, it must be that. is a child ofn;.

Next, it is easy to see that for evesye Str(Tx(a)), g(s) €
Str(T). Moreover, since we have defingds) = h(s), we also
have that thay(s) = s for every constant.

Finally, we prove that for every nodeof T’ 5y and@a € Att
such thatpa.(v) is defined,g(paq(v)) = paa(g(v)). Assume
that for a nodev of T’ 5y and for an attributeé®a € Att, it is the
case thapaq(v)) = s. We must prove thag(s) = paa(g(v)).
But we have defined(s) = h(s), and thus, we need to prove that
h(s) = peag(v). Assume first that is marked. Then, notice that
is the variable in the position correspondingda in attr(Ry.)) in
the predicate ofNL PATTERN(7, D) added in the step correspond-
ing to Q.. Thus, from the properties of relational homomorphisms,
s must belong to the tuple iR,y in INLDOC(T', D) that contains
h(idy) in its first position. Sincg mapswv to the node irl" iden-
tified by h(id. ), it must be the case that.(g(v)) = h(s). For
the case where is not marked, consider the nearest appropriate
ancestor o in Ty (3, and letv’ be such node. Notice that singe
preserves the child relatiop(v’) is the nearest appropriate ances-
tor of g(v). The proof then follows by considering the attribute cor-
responding td@a in Ap(¢) in the relationR,,, wheret’ = \(v")
and then using the same argument as in the previous Case.

By combining this result with Lemmas 4.4 and 4.5, it is not dif
ficult to obtain the following corollary:

COROLLARY 5.2. Let D be a DTD,T an XML document that
conforms taD, andr a pattern compatible witlD. In addition, let
a be a tuple of elements and variables. Then, there exists @ahom
morphism fronil’; 5y to 7" if and only if there is a homomorphism
from Iy parrern(, ) (a) 10 INLDOC(T, D).

Moreover, it is not difficult to adapt this proof to show thd-fo
lowing:

LEMMA 5.3. Let D be a DTD, andl}, 7% two trees that con-
form to D. There is a tree homomorphism frofy and 7% if
and only if there is a homomorphism fromLDoc(71, D) to
INLDOC(T>%, D)

Conjunctive queriesover trees. We use the language that is es-
sentially conjunctive queries over trees [6, 16, 10] withigation
along the child axis.

The language&7 Q is obtained by closing patterns under con-
junction and existential quantification:

Q=7|QAQ[3zQ,

where 7 is a fully specified tree-pattern formula. The seman-
tics is straightforward, given the semantics of patternindd
above:Q(a) A Q(b) is true iff bothQ (@) andQ’(b) are true, and
Jz Q(a, z) is true iff Q(a, c) is true for some value. The output
of Q on atre€el” is denoted by (T').

We say that a query) is compatible with the DTDD if every
pattern used in it is compatible with.

The inlining of queries) compatible withD is given by the
recursive algorithmNL QUERY below.

Procedure INLQUERY( Q, D)

Input : ADTD D, a query@ compatible withD.
Output: A conjunctive query overNL SCHEMA(D).
if @ = 7 then

return INLPATTERN(7, D)
dseif Q = Q1 A Q2 then

return INLQUERY(Q1, D) A INLQUERY(Q2, D)
dseif Q = 3zQ; then

return 3z INLQUERY(Q1, D)

Now we show that every quei® in C7 Q can be computed by
its inlining on the inlining of its input (assuming, of coerscom-
patibility with a DTD). In other wordsRequirement 3 is satisfied.

THEOREM 5.4. Given a DTDD, a treeT that conforms to it,
and a compatible querg, we have

Q(T) = INLQUERY(Q, D)(INLDOC(T, D)).

PrROOF Fix a DTD D and a tre€l’. The proof is done by in-
duction. We have already proved the base case with the pfoof o
Proposition 5.1.

For the induction step, assume first this of form32Q1(z, z),
and thaiQ1(7") = INLQUERY(Q1, D)(INLDOC(T, D)). Itis now
easy to see th&(7") = INLQUERY(Q, D)(INLDOC(T, D)): As-
sume first that a tuple belongs toQ(7"). Then, there must be a
tuple z of variables such tha@, z) belongs toQ1(7"). Thus, from
the inductive hypothesis, we obtain tl{at z) belong to the evalu-
ation of INLQUERY(Q1, D)(a, z) over INLDOC(T', D). It follows
that(a, z) belong to the evaluation oL QUERY(Q, D)(a, z) over



INLDOC(T, D), since the algorithms definesl QUERY(Q, D) =
3ZINLQUERY(Q1, D). The other direction is analogous.

Next, assume that) = Qi(z1) A Q2(Z2), and that
Q1(T) = INLQUERY(Q1,D)(INLDOC(T, D)) and Q2(T) =
INLQUERY(Q2, D)(INLDOC(T, D)). The argument is similar to
the previous case: assume first that a tupleelongs toQ(T').
Then, there must be subtuples, a» of a such that(a:) and
(a2) belong toQ1(7T") and Q2(T'), respectively. We obtain that
(a1) and (a2) belong to the evaluation ofNLQUERY(Q1, D)
and INLQUERY(Q2, D) over INLDocC(T, D), and thus, since
INLQUERY(Q, D) = INLQUERY(Q1, D) A INLQUERY(Q2, D),
a belongs to the evaluation ol LQUERY(Q, D) overT. The other
direction is also analogousl

Inlining XML schema mappings We use our transformation of
tree patterns to define the procedura M AP, that, given source
and target DTDsDs and D, transforms an XML mapping\{
into a relational mappingNLMAP(M,Ds,Dr) specified with a
set of source-to-target tuple generating dependencies.

Procedure INLMAP( M, Dg, Dr)
Input : An XML mapping M from a source DTODs to a
target DTDDr.
Output: A relational mapping fromNLSCHEMA(Ds) to
INLSCHEMA(DT).
Set NLMAP(M, Dg, Dr) :=()
for dependencyt(z) — Jzn’(z, z) in M do
INLMAP(M, Ds, Dr) := INLMAP(M, Ds, Dr)|J
{INLQUERY(r, Ds)(Z) — 3z INLQUERY(n’, D1)(Z, 2)}
end
return INLMAP(M, Ds, Dr)

Correctness While one could be tempted to ask for a translation
that preserves all solutions, such a result need not hold.réla-
tional mapping NLMAP uses null values to represent the shredded
nodes of XML trees, and thus we should only consider solstion
whose null values have not been renamed. However, reldSona
lutions are open to renaming of nulls. This intuition can be f
malized by means of the universal solutions, which are thetmo
general among all solutions, and thus do not permit null mena
ing. Furthermore, one typically materializes a universdlison,
as these solutions contain all the information needed topcben
certain answers of conjunctive queries. This motivategéktric-
tion of our Requirement 4 to universal solutions.

The theorem below shows that parts (a) and (lRefuirement
4 hold. Note that in part (b), relational universal soluti@me only
required to contain a shredding of an XML universal solutithis
is because relational solutions are also open to addingamnptu-
ples, which need not reflect a tree structure of an XML documen

THEOREM 5.5. a) Let M = (Ds,Dr,%X) be an XML
schema mapping and” an XML document that conforms to
Ds. If T" is an M-universal solution forT’, then its inlining
INLDOC(T", D7) is anINLMAP(M, Dg, Dr)-universal solution
for INLDOC(T, Ds).

b) Let M = (Ds,Dr,X) be an XML schema map-
ping, and T an XML document that conforms tds.
Then for everyINLMAP(M, Ds, Dr)-universal solutionR for
INLDOC(T), Ds) there exists aoM-universal solutiorf” such that
INLDOC(T", Dr) is contained inR.

To prove Theorem 5.5, we first provide a key lemma. Mt=
(Ds, Dr,X) be an XML schema mappind]’ be an XML tree

that conforms toDs, and J an INLMAP(M, Ds, Dr)-solution

for INLDOC(T, D). For a relationR, of INLSCHEMA(Dr), we
denote all the positions that correspond to an attribdger id,, )

of R, as thedentifier positionof R,. Moreover, an elementin a
tuplet in the interpretation oR, in J is anidentifier elemenif it
occupies an identifier position in We also define thettribute po-
sitions of a relatiorR, as the positions that correspond to attributes
of £orof ¢’ | u(¢") = £in D, and define the notion of aattribute
elementas expected. We now present the lemma:

LEMMA 5.6. LetM = (Dgs, Dr,X) be an XML schema map-
ping, andT be an XML tree that conforms t©s. Moreover, let
J be anINLMAP(M, Ds, Dr)-solution forINLDoc(T', D) such
that (1) every identifier element ih does not appear in two iden-
tifier positions in two (not necessarily different) tuplasd (2) no
identifier element is also an attribute element. Then, tegists a
tree T" such thatiNLDoc(T”, Dr) C J, and such thafl” is an
M-solution forT'.

Lemma 5.6 formalizes the intuition that this class of "well
behaved" NLMAP(M, Ds, Dr)-solutions contains the correct
representation of a shredded tree. The proof of this Lemma
constructs fromJ a correct tree representation, in which each
identifier element inJ represents a node of the tréé such that
INLDoc(T", Dr) C J. We leave out the details, since the proof
is lengthy and straightforward.

We now prove Theorem 5.5.

PROOF Part a: Let M = (Dgs, Dr,¥) be an XML schema
mapping, andl’ an XML document that conforms t®s. Con-
sider an arbitraryM-universal solutiorf” for T'. We need to show
that INLDOC(T”, D7) is an NLMAP(M, Dg, Dr)-universal so-
lution for T. The proof is split into two parts, proving first that
INLDocC(T, Dr) is a solution, and then that it is universal.

As stated, we first prove thatNnLDoc(T’,Dr) is an
INLMAP(M, Dg, Dr)-solution for INLDOC(T, Ds).  From
Proposition 3.4, it is clear thatNLDoc(T’, Dr) satisfies
the dependencies IMAp. We now show that the pair
(INLDoC(Ds, T), INLDOC(D;, T")) satisfies all the dependen-
cies of NLMAP(M, Dg, Dr). Assume that for a dependency of
the form

INLPATTERN(7(Z), Ds) — 3ZINLPATTERN(7'(Z, Z), D)

there is a tuple , such that WLDoc(Ds,T) =
INLPATTERN(7 (¢,), D).  From Proposition 5.1, it must be
the case thal" | =(¢,). Thus, sincel” is a solution forT,
there must be a tuple of constant and/or null elements such that
T' & 7'(ts,t.). Again, from Proposition 5.1, we obtain that
INLDOC(Dr,T') = INLPATTERN(7 (¢4, t.), D). This finishes
the proof that NLDoC(T”, Dr) is an NLMAP(M, Ds, Dr)-
solution for NLDOC(T, Ds).

We now prove thatNLDoc(T”, Dr) is indeed universal. As-
sume for the sake of contradiction that it is not an univessél-
tion, that is, there exists a solutiohsuch that there does not exist a
homomorphism fromNLDoc(T”, Dr) to J. Construct fromJ a
solution.J’ as follows: For each identifier position of every relation
Ry in INLSCHEMA(Dr), and for each tuple in the interpretation of
Ry, replace each identifier elemeantf ¢ with a fresh null element
2. In addition, replace each occurrencexdh the positionid,, /)
of tuples in the interpretation of relatio that reference?, in a
constraint in NLSCHEMA(Dr) for z4, and replace each other oc-
currence ofx with a different, fresh null element. It is easy to see
thatJ’ is an NLMAP(M, Dg, Dr)-solution for NLDOC(T, Ds)



as well. In fact, since we have replaced each of those elament 7" under M and the certain answers dfNLQUERY(Q, Dr) for

a with nulls in a "cascade" fashiow]’ clearly satisfies all depen-
dencies in NLSCHEMA(Dr). The same argument can be used to
show that(INLDOC(T', Ds), J') satisfies as well the dependencies
in INLMAP(M, Ds, D). Finally, there is a homomorphism from
J' to J: map eache, and each fresh null replacingas explained
above back to the element and map each other element to it-
self. Thus, by composition of homomorphisms, there canrist e

a homomorphism fromNLDoc(T”, Dr) to J', as this would im-
ply the existence of a homomorphism fromuDoc(T”, D7) to

J. However, note that solutioft’ satisfies the property of Lemma
5.6, since all identifying elements not satisfying it haveeb re-
placed by fresh new null elements. Let tHEn be theM-solution

for T such that NLDoc(T;/, D) C J' . (Lemma 5.6 proves
the existence of’;,.) Notice that, sinceNLDoc(T;., D) C J',
there also exists a homomorphism froneDoc(T;,, Dr) to J'.

Yet again, by composition of homomorphisms, we concludé tha
there cannot exist a homomorphism fromLDoc(T”, Dr) to
INLDOC(T;/, D).

On the other hand, the XML tréE’ is an M-universal solution,
and thus there is an homomorphisms frétnto 7';,. But then, by
Lemma 5.3, there exists a homomorphism framDoc(T”, Dr)
to INLDOC(T;/, Dr). This is a contradiction.

Part b: Assume that? is an INLMAP(M, Ds, Dr)-universal
solution for INLDOC(T, Ds). By inspecting the form of the de-
pendencies ofNLMAP(M, Ds, Dr), one notes thaR needs to
satisfy the conditions of Lemma 5.6, that is, every identiéie-
ment in R does not appear in two tuples in two different identifier
positions; this can be easily using simple tools from refsl data
exchange (see [12]). Then, from Lemma 5.6, Tétbe an.M-
solution forT such that \LDoc(T”, Dr) C R.

To prove thatT”’ is an M-universal solution forT, let T
be an M-solution for T'; we need to prove that there is a ho-
momorphism from7T” to T”'. From the part a) of this The-
orem, NLDoc(T”, Dr) is an INLMAP(M, Ds, Dr)-solution
for INLDOC(T, Ds), and, sinceR is universal, there is a ho-
momorphismh from R to INLDoC(T”, D). Moreover, since
INLDOC(T",Dr) C R, h is also a homomorphism from
INLDOC(T", D7) to INLDOC(T’, Dr). Thus, from Lemma 5.3,
there is a homomorphism froffi’ to 7. This concludes the proof.
O

Answering XML queriesusing relational data exchange. The
semantics of query answering in data exchange, both re&dtand
XML [12, 21, 8, 6, 4], is defined by means of certain answers.
That is, given a schema mapping = (Ds, Dr, ), a treeT” that
conforms toDgs, and a conjunctive tree que€y that is compatible
with Dr, the certain answers of) for T' under M, denoted by
CERTAINM (@, T'), is the set of tuples that belong to the evaluation
of Q over every possiblé{-solution forT, that is,\{Q(T") | T'
is an.M-solution for7'}. Note that our queries return sets of tuples,
so we can talk about the intersection operator.

It was shown in [6, 4] that, for conjunctive tree queries arapm
pings using nested-relational DTDs, computing certaimvans for
a given source tre#' is solvable in polynomial time. Thus, for the
classes of mappings and queries we consider, there is ndeomp
ity mismatch between relational and XML data exchange. Ex¢ n
theorem shows that our translation is correct with respequery
answering, that is, ouRequirement 5 is satisfied.

THEOREM 5.7. Let M = (Ds, Dr,X) be an XML schema
mapping. Then, for every XML tre€ that satisfiesDs and
for every conjunctive tree quer®, the certain answers af) for

INLDOC(T, Ds) overINLMAP(M, Ds, Dr) coincide:

CERTAINM(Q,T) =
CERTAINiwmap(a1) (INLQUERY(Q, D), INLDOC(T, Ds)).

PrRoOOF. Assume first that a tuplé belongs to the certain an-
swers of a queryQ over a treeT under a mappingM =
(Ds, Dr,%). Then, clearly,z belongs to the evaluation ap
over the canonical solution A&ISoL(7T") for T (which, in this
case, is guaranteed to exists [6]) undet. Then, by Propo-
sition 5.4, ¢ belongs to the evaluation ofNLQUERY(Q, Dr)
over INLDoc(CANSOL(T), Dr). Moreover, from Proposition
5.5, INLDoc(CANSOL(T), D) is an INLMAP(M, Ds, Dr)-
universal solution for MLDOC(T, Ds). From results in [12], we
obtain thatt belongs to the certain answers ofLIQUERY(Q, Dr)
over INLDOC(T, Ds) underM. The other direction is symmetric.
a

The result of Theorem 5.7, combined with the standard proce-
dure for evaluating conjunctive queries in relational datehange,
also gives us an algorithm for computing certain answers.

COROLLARY 5.8. Under the conditions of Theorem 5.7,
CERTAINA (@, T') can be obtained by the following procedure:

1. run INLQUERY(Q, D7) on an INLMAP(M, Ds, Dr)-
universal solution fotNLDOC(T, Ds);
2. discard all tuples that contain null values.

6. XML-to-XML Queries

Up to now, we have only considered queries that output tugfles
attribute values. In this section we shall focus on properlXtgh
XML query languages, that is, on queries that output XML dree

Some immediate questions arise when dealing with these for-
malisms in the data-exchange context. N\dt= (Ds, D7, X) be
an XML schema mapping; be a tree conforming t®s, andQ be
an XML-to-XML query. Since the evaluation @ overT returns
an XML tree, we cannot define certain answer§ (7)) | 7"
is a solution forl'}, since the meaning of the intersection operator
for XML documents is not clear.

To overcome this problem, we use recent results from [11],
which showed how to define certain answers for queries return
ing XML trees, and how to use them in the data-exchange cbntex
The key idea of [11] is to use tree patterns to define inforomati
contained in documents, and to use them to represent cojpact
the certain knowledge from the collecti®@(7")) | T' is a solu-
tion for T'}. More precisely, ifll is a set of tree patterns which are
matched by every tre€@(T"), we look for a small sefl, of pat-
terns that is equivalent fd as a description of certain answers. By
equivalence we mean that a tree matches every pattdrnifinit
matches every pattern Ifiy. If the setlly is finite, then its patterns
can be put together to create a tree with nulls, which we tlem v
as the certain answer.

We shall not need here additional details of the constroctio
instead, we shall use a result from [11] that tells us howabert
answers can be computed for a specific XML-to-XML query lan-
guage. The language, which is called TQL (to be defined shortl
is inspired by XQuery's FLWR (for-let-where-return) expséons,
and is restricted to positive features (i.e., no negatiofe key
result from [11] is the following:

PrRoOPOSITION6.1 ([11]). Let M = (Ds,Dr,X) be an
XML schema mappingp a TQL query, andl’ a tree that con-
forms to Ds. If T is an M-universal solution forT’, then
CERTAINAM(Q, T) = Q(T").



Given this result, we now do the following. We provide a fofma
definition of the TQL language of [11], which can express XKdi--
XML analogs of relational conjunctive queries. We then s
to adapt the machinery that we have previously developee\ar
uating certain answers over a universal solution. Noteftirathis
new translation, a TQL quer§ returning trees needs to be trans-
lated into asetof relational queries generating views that define the
shredding of the tre@(T").

6.1 TOQL queries

TQL queries [11] are inspired by the FLWR (for-let-where-
return) expressions of XQuery [31], but use only positivattiees.
The key construct ifor = (Z) return ¢(z), wherer(z) is a pattern
andq(z) is a query that defines a “forest expression.” Formally, the
syntax of forest expressions is

q(z) =

| formn(a,z,y) return ¢’ (z,y)

where/ ranges over node labelg,over constant attribute values,
andz etc are tuples of variables.

A TQL query @ is an expression of the formig|, whereq is
a forest expression without variables. To define the secwmofi
this language, we first define inductively the forggtz)] . ,,, for
a valuationv of all variables inz as attribute values. We use the
notation/(a)[f] for a tree whose root is labeléand carries a tuple
of attributesa; further, f is the forest of subtrees below the root.

Hm = ¢ (empty forest
@ z)d @)y, = av(@)[ld]r,]
ld(@),d" @), = 1,91 ]z,

[for x(a, z,y) retun ¢'(2,9)] ., =

UJ{lg'].,, | v extendsy andT = =(a, v’ (z),2' (7)) }

For a treel” and a queryy = r[q|, the evaluatiorQ(T) of Q over
T is defined as the tred[q] ], i.e., the fores{q] . under rootr.

EXAMPLE 6.2. Recall the tree T from Figure 1(a). The tfEe
from Figure 3(a) can also be obtained as the transform&gich)
resulting from the evaluation of a TQL query over T, where
Q = r[q], andq is defined as

for r/book () / author /name(y) return

writer[name(y), work(z)]

®)

For the sake of readability, we use theperator to denote the child
axis in tree patternst

6.2

If Qis a TQL query, then, to be able to define its inlining trans-
lation, we need to specify a DTD for tre€X7"). Note that TQL
queries define the shape of their outputs, and at the samedtime
not put restrictions on the number of appearances of lablelace
it is natural to define the DTD for outputs &f as astarredDTD
D¢, whose shape is determined®yand where each element type
except the root occurs under the Kleene star.

More precisely, for a forest expressignwe define a foresk,
inductively as follows: F. is the empty forestFy, is £[Fy];
Fq’Uq” = Fq’ U Fq”v andEOfﬂ return ¢/ = Fq’- FOI’Q = T[Q]
we letTo = r[Fy].

Inlining TQL queries

Then Dg is a non-recursive DTD that has a ryle— ¢7 - -- ¢,
for each node in T with children labelled:, . . ., ¢,. As usual,
we require thatDq be acyclic and we assume without loss of gen-
erality thatG(Dg) is a tree.

EXAMPLE 6.3. (Example 6.2 continued) Recall quety =
r[q]. Then,Tq is the XML tree given by-[writer[name, work]],
and thusD¢ contains productions: — writer™, writer —
name* work™, name — e andwork — €. O

Before showing the algorithmNLTQL, we need to introduce
some features that will be used in the algorithm. Consideinag
query (3) and DTDDg, in Examples 6.2 and 6.3. For each pair
of attributes that satisfy/book () / author /name(y), the query
Q creates a subtreeriter[name(y), work(z)] in the treeQ(T).
Thus, the relational translation would need to create opgetim
the relations corresponding teriter, nameandwork for each pair
of attributesr, y that satisfy the relational translation of the pattern
r/book(x) / author /name(y) in the instanceNLDOC(T).

In the relational translation we need a way to associate pach
ticularwriter wih a particulamameandwork. One possible way of
doing this is by creating a (Skolem) functigrthat associates with
each pair(name, work) a unique identifier for the correspond-
ing writer. The functionf must be defined in such a way that
f(book, name) is different for each different paimame, work).
We enforce this requirement by letting each tef(@) represent a
distinct constant ().

We will define our translation algorithm inductively. Theyke
procedure TQITEPfor the inductive step is described below. Its
inputs, in addition to a query and a DTD, include a conjurectiv
query corresponding to the conjunction of patterns in theryu
and a function term corresponding to the parent in the Q€€)
(for example, when creating views for relatidd, .., we would
input the identifierf (x, y) of the parent node labelledriter). This
is illustrated by the example below.

EXAMPLE 6.4. (Example 6.3 continued) Assume that query

Q= r[qf] of Examples 6.2 and 6.3 is posed o{éunder schema
D. The following views define the translation fQx.

R, (fr) :=true
Rwriter(.f’wr'iter'(xv y)7 fT) =
INLQUERY(7/book (x)/ author /name(y), D)

Ruame (fname (x7 y)7 Swriter (xv y)7 y) =
INLQUERY(7/book (x)/ author /name(y), D)

Ruyork (fwork (fE, y)7 Juwriter (:B7 y)7 "E) =
INLQUERY(7/book (x)/ author /name(y), D)

Notice how each tuple in relation3,,.;me and R, is set to ref-
erence the correct tuple in relatidty,iter. O

To define the inlining translationNLTQL, we simply need a
Skolem term for the root of the tree, as the basis for the itkic
procedure TQITER

A TQL query @ is compatible with a DTDD if all the patterns
used inQ are compatible wittD. The following proposition shows
that INLT QL satisfies an analog &equirement 3 for queries that
output trees.

PROPOSITION 6.5. Given a DTD D, a TQL query@ com-
patible with D, and a treeT that conforms taD, we have that
INLDOC(Q(T), Dg) = INLTQL(Q, D)(INLDOC(T)), up to re-
naming of nulls.

That is, the set of viewsNLTQL(Q, D) applied to the inlining
of T yields the same answer as the inlining®f7’).



Procedure TQLSTER Q, D, ¢, t)

Input : A forest expression(z), a DTD D, a conjunctive
queryp(z) and a Skolem term
Output: A set of views over NLSCHEMA(Dg).

if ¢(Z) ::= ethen
return ¢
eseif ¢(z) == ¢' ('), ¢"(z") then
return TQLSTERq', D, ¢, t) U TQLSTERq”, D, ¢, t)
eseif q(z) == {(a,z’)[¢'(z")] then
Let f be a fresh Skolem function. Define viéwas
Ri(f(Z),t,a,z') := INLQUERY(y, D), or just
Ri(f(),t,a) := trueif o = 0.
return {V} U TQLSTERY, D, o, f(Z))
elseif ¢(z) := for n(a, z, y) return ¢'(z, ) then
Lety'(a, z,79) = ¢(z) A7(a,z, 7).
return TQLSTERq', D, ¢', 1)

Procedure INLTQL( @, D)

Input : ATQL query@ = r[g] and a DTDD.
Output: A set of views over NLSCHEMA(Dg).

Create a O-ary functioffi,.
return TQLSTERQ, D, 0, f-())

PROOF We begin by proving that
INLTQL(Q, D)(INLDOC(T, D)) C  INLDOC(Q(T), Dg).
Let Dg be the DTD corresponding t@). Assume that there
exists a tuplet that is part of the evaluation of a view
in INLTQL(Q, D)(INLDOC(T, D)), with view V of form
Ri(f(Z),9(x"),a,z") := INLQUERY(¢(Z), D) (we do not prove
the case whe# = r since it is very similar). Let be a homomor-
phism so thav(f(z), g(z"),a,z’) = t. For the sake of readabil-
ity, we letv(z) = b. Notice that, from the definition ofNLTQL,
we have thab belongs to NLQUERY(¢p, D)(INLDOC(T, D)). By
Theorem 5.4) belongs tap(T"). Assume that the forest query that
created view/ in the inlining of Q is of the formé(a, ') [¢' (z")].

It can be proved by induction thdg(z)],, , must contain a node
of the form¢(a, v(z"))[[¢'(z")] ). Thus, the inlining ofQ(T")
must contain a tuple iR, of the form (id,, id, ), a, v(Z")); the
proof follows by renaming nulléd,, andid,,, into v(f(z)) and
v(g(z")), respectively. We only need to show that no null value
has to be renamed as two different constants. This follonesi
the attributesid, andid,, ;) correspond respectively to a key and
foreign key of relationR,, and the algorithmNLDocC chooses
fresh null symbols for each value in the position corresjmamdo
the attributeid,.

Next, we show that NLDoc(Q(T),Dq)
INLTQL(Q, D)(INLDOC(T, D)), up to renaming of nulls.
Since every element dDg is under a star, it is easy to see that
relation R, will contain only attributesid, id,, ;) and Ap,, 0).
We first rename all elements that are in a position correspgrtd

attributesid, as follows:

Let ¢ be a tuple of relatioriz, in INLDOC(Q(T'), Dg), and as-
sume thatid,, is the element that corresponds to attribiife of
Ry. If £ = r, renameid,, by the 0-ary termf.() used in proce-
dure INLTQL. For the case wheh # r, it is easy to see from
the definition of the procedureiLDocthat@(7') must contain an
¢-labelled nodex.

Thus, from the semantics of TQL queries, there must be a sub-
forestq of Q of the formq(z) = £(a,z’)[¢’(z")] and a valuation

c

v such that is the top node of foredy(z] . . Let f be the func-
tion created by proceduralL TQL in the step corresponding to
Finally, letw1(z1), ..., m(Zx) be the sequence of patterns present
in for-return constructs i from the root untilg, and letz be the
union ofz1, ..., zx. Then, renamed,, ascy(,(z)). Notice that this
procedure is well defined, sineemust apply to each variable 6f

Let us denote by the instance resulting from renaming all el-
ements of NLDoOc(Q(T"), Dg) accordingly. We show thal C
INLTQL(Q, D)(INLDOC(T, D)), up to renaming of nulls in at-
tribute positions, that is, nulls in positioasp (¢) in tuples onR,.

Let ¢ be a tuple of relation?, in J, and assume that the ele-
ments int corresponding to attributed,, id, ) and Ap, (£) are
Cs(B)s Cq(b'), Gs TESpEctively.

We need to show that such tuple is in fact
INLTQL(Q, D)(INLDOC(T, D)). Letn andn’ be the nodes in
Q(T) such thatid, andid,, were replaced by s, andc, gy,
respectivelyp andv’ the valuations witnessing the membership of
n andn’ in Q(T), as explained above; andz), ¢'(z') the forest
queries that give rise to the creation pfand respectivelyy by
procedure NLTQL. Moreover, letp(z) = m1(21), ..., mx(Zk) be
the sequence of patterns presenrfbinreturn constructs ir from
the root untilg, wherez is the union ofzy, ..., zx. Then notice
that valuatiorw is such tha{T’, v) | ¢(2).

In the same fashion, we selegt(z') = =1, (21),. .., 7k (Zx/)
andz’ for forest queryq’. As a remark, since’ is the parent of.,
observe that each pattef) corresponds to a patterty, for some
j < k. Finally, it is easy to see that there is no other query of
the form ¢(y, a)[¢” (¥’)] in betweeng and¢’. Thus, the step of
INLTQL corresponding tg(z) must have received the terqiz’)
as input.

By following these remarks, one notices that procedure
INLTQL creates the following view” for the step ofg(z):
Re(f(2),9(#),d, &) := INLQUERY(¢p, D).

All that remains to see is that, sin€&,v) = ¢(z), it must be
that INLDOC(T, D) = INLQUERY(¢(v(Z)), D). This ensures the
existence of a fact of the forme,(cs(v(z)), Co(uz)), d, v(Z)) =
Re(cs @), cq@ry, @) iIN INLTQL(Q, D)(INLDOC(T, D)). O

in

Trandating relationsback into XML

To complete the translation, we need an algorithm to publish
back the relational data as an XML document. This is done by
means of the algorithm UBREL. We say that an instanck of
INLSCHEMA(D) D-representsa tree7" that conforms toD if
I = INLDOC(T, D).

This algorithm will only work for relational instances thiap-
resent shredded documents. The following proposition shitsv
correctness.

PROPOSITION 6.6. Given a DTD D and a rela-
tional instance I of INLSCHEMA(D), it is the case that
INLDOC(PUBREL(D, I)) = I.

PROOF Let T be a tree such thanLDoc(T,D) = I. We
construct a mapping betweerll” and RUBREL(I) as follows:

e For each node: of T that is marked, let be its label, and
id, be the identifier of = INLDOC(T, D) that belongs to
the attributeid, of the tuplet created by proceduraiLDoc
from noden. Then, definé: so that it maps: to the node of
PUBREL([) created by procedureUBREL from tuplet of
Ry.

For each node: that is not marked, let’ = p(n), andt
the corresponding tuple imLDoc. Let/ and/’ be the la-
bels ofn andn’, respectively, and assume thalt,, id,,, are



Procedure PuBREL( D,I)
Input : ADTD D and an instancé that D-represents some
tree.
Output: An XML tree T that is D-represented by.

for each node? of G(D), traversed as Depth-first-searcio
for each tuplet of R, in I with elements:, a andn’
corresponding to attributesl,,, Ap(¢) andid,,(,,) do
for every non-starred nodé’ of G(D) such that
u(¢) = ¢, and elements” andb in ¢ corresponding
to attributesid,, and Ap(¢') do
Create a node” in T labelled?’, with attributesh,
in a parent-child scheme that resemilg@).
endfor
Add toT" a noden labelled?, with attributesa, with n’
as ancestor, according to the parent-child sequence
defined byG(D (no parent ift = r).
endfor
endfor
returnT

the identifiers of in positionsid, andid,s of tuplet in R}.
Then, procedure PBREL will create from¢ a noden; la-
belled¢’ and a node:, labelled with?, such thagi(n:) = n;
in PUBREL(I). Defineh so that it maps: to n:.

It is clear that this mapping is one to one, sinée =
INLDOC(T, D). Furthermore, sinc&/(D) is a tree, it is also clear
that this mapping preserves the relatioof nearest appropriate an-
cestors, as the way in which proceduresfREL creates the parent-
child relation of nodes is always unique. Finally, from tredidi-
tion of procedures ®BREL and INLDOC it must be the case that
for everyn in T labelled?, the se{ paq(n) | @a € Ap(¢)} is the
same agpaq(h(n)) | Qa € Ap(¢)} in PUBREL(I).

Itis now an easy exercise to prove that Doc creates the same
relations (up to renaming of nulls) fordBREL(I) and(T’), since
for every marked node. of T' the procedure creates exactly the
same tuple as marked nofién) of PUBREL(I). O

6.3 TQL queriesin XML data exchange

Combining the previously mentioned result in [11] with the
correctness of the algorithms we presented we concludeRirat
quirements 1-5 are satisfied for data exchange with XML-to-XML
queries:

THEOREM 6.7. Let M = (Ds, Dr,X) be an XML schema
mapping. Then, for every XML tre€ that satisfiesDs and
for every TQL querny®, the certain answers of) for T under
M coincide with the certain answers oNLTQL(Q, Dr) for
INLDOC(T, Ds) overINLMAP(M, Ds, Dr) :

INLDOC(CERTAINAM(Q, T), Dg) =
CERTAINiymar(ar) (INLTQL(Q, D), INLDOC(T, Ds)).

Remark The notion of certain answers naturally (component-wise)
extends to queries computing multiple relations.

PrROOF. Fix anM-universal solutiorf” for T'. By Proposition
6.1, CERTAINM(Q,T) = Q(T"), whereT' is a universal solu-
tion. Furthermore, by Proposition 6.5yUDoc(Q(T”), Do) =
INLTQL(Q, Dr)(INLDOC(T", Dr)).

Finally, since the views created by the procedure
INLTQL are essentially conjunctive queries using Skolem

terms, and (by Theorem 5.5)NLDoc(7’,Dr) is an
INLMAP(M, Dg, Dr)-universal solution for MLDoc, it
can be proved that NLTQL(Q, Dr)(INLDOC(T’, D)) =
CERTAINiwumar(ar) (INLTQL(Q, D), INLDOC(T, Ds)), using
standard tools from the data-exchange literature (see3[L2]

Theorem 6.7 and Proposition 6.6 give us a way
of computing CERTAINM(Q,T). First, compute
CERTAINjwmar(a1) (INLTQL(Q, D), INLDOC(T', Ds)) by
materializing views NLTQL(Q, Dr) over the canonical solution
for INLDOC(T, Ds), and then use the proceduraJ#REL to
output it as the treeERTAINA (Q, T).

7. Concluding Remarks

Our technique provides a relational approach to solve tvibef
most important problems of XML data-exchange settings:entat
alizing solutions and answering queries. The diagram belamw-
marizes this. In a pure XML setting, we can start with a docoime
T and use a mapping to find a (universal) solutioff},,;, over
which we can then answer a quépyto produce certain answers.

M .
T Tiniv Q certain answer
INLDOC INLDOC
INLMAP(M INLQUERY .
R (M) Rl Q (@) certain answer

Using the translationNLDoc of documents, we generate a
relational instanceR, on which the translation of the mapping
INLMAP(M) generates a universal solutidty,,,. This solution
is a shredding, viaNLDoc, of a universal XML solution, and also
conforms to the shredding of source DTD. Finally, we apply th
standard technique [12] for evaluating queries in relatidata ex-
change to the query translatioRUQUERY(Q®) or INLTQL(Q) to
produce the correct answers, in the latter case with thekplitss
of using RUBREL to publish back the results into XML.

Implementing our proposed algorithms for use in practigal s
tems would be straightforward using the specificationsrgimehis
paper. A natural next step is to evaluate XML data-exchagge s
tems using relational data storage and implementationsiioflo
gorithms. We are currently working in this direction.

We finish with a remark about the possibility of allowing oper
tors? and+ in DTDs, as well as a choice operator for representing
multiple choices. We say that a non-recursive DTDis anex-
tended nested relationaDTD if all rules of D are of the form
£—Lly.. Ay, 0rl — bo+...+ L, where all the;’s and?;’s are
distinct, and eacl; is one of¢;, ¢;?, 05 or éj (as usualf? stands
for £|e and¢™ for ££*).

The procedureNL SCHEMA can be extended to these DTDs. For
each element that is under the operat@r the transformation cre-
ates a special relatiatthat references the relation of the nearest ap-
propriate ancestor of. Furthermore, the transformation for a rule
of the form¢; — £3 can be defined by including a dependency that
ensures that there is at least one tuple in the relatignfor each
tuple in R, . Finally, for the choice operatdr — fo + ... + {m
the transformation would create one relatiBpn for each possible
choice of{y,...,¢n. Then, it is possible to extend all the proce-
dures in a way that still satisfié&equirements 1-5 under extended
nested relational DTDs.
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