Skip to main content
Log in

A survey on Lyapunov-based methods for stability of linear time-delay systems

  • Review Article
  • Published:
Frontiers of Computer Science Aims and scope Submit manuscript

Abstract

Recently, stability analysis of time-delay systems has received much attention. Rich results have been obtained on this topic using various approaches and techniques. Most of those results are based on Lyapunov stability theories. The purpose of this article is to give a broad overview of stability of linear time-delay systems with emphasis on the more recent progress. Methods and techniques for the choice of an appropriate Lyapunov functional and the estimation of the derivative of the Lyapunov functional are reported in this article, and special attention is paid to reduce the conservatism of stability conditions using as few as possible decision variables. Several future research directions on this topic are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu G P, Rees D, Chai S C, Nie X Y. Design, simulation and implementation of networked predictive control systems. Measurement & Control, 2005, 38: 17–21

    Article  Google Scholar 

  2. Liu G P, Mu J, Rees D. Design and stability analysis of networked control systems with random communication time delay using the modified MPC. International Journal of Control, 2006, 79: 288–297

    Article  MathSciNet  MATH  Google Scholar 

  3. Liu G P, Xia Y, Rees D, Hu W S. Design and stability criteria of networked predictive control systems with random network delay in the feedback channel. IEEE Transactions on Systems, Man and Cybernetics–Part C, 2007, 37(2): 173–184

    Article  Google Scholar 

  4. Sun J, Chen J, Gan MG. A necessary and sufficient stability criterion for networked predictive control systems. Science China Technological Sciences, 2016, 59(1): 2–8

    Article  Google Scholar 

  5. Li M, Sun J, Dou L, Stability of an improved dynamic quantized system with time-varying delay and packet losses. IET Control Theory & Applications, 2015, 9(6): 988–995

    Article  MathSciNet  Google Scholar 

  6. Sun J, Chen J. Networked predictive control for systems with unknown or partially known delay. IET Control Theory & Applications, 2014, 8(18): 2282–2288

    Article  MathSciNet  Google Scholar 

  7. Michiels W, Niculescu S-I, Moreau L. Using delays and time-varying gains to improve the static output feedback stabilizability of linear systems: a comparison. IMA Journal of Mathematical Control and Information, 2004, 21(4): 393–418

    Article  MathSciNet  MATH  Google Scholar 

  8. Salarieh H, Alasty A. Delayed feedback control of chaotic spinning disk via minimum entropy approach. Nonlinear Analysis: Theory, Methods and Applications, 2008, 69(10): 3273–3280

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang B L, Huang Z W, Hang Q L. Delayed non-fragile H control for offshore steel jacket platforms. Journal of Vibration and Control, 2015, 21(5): 959–974

    Article  MathSciNet  MATH  Google Scholar 

  10. El’sgol’ts L E, Norkin S B. Introduction to the theory and applications of differential equations with deviating arguments. Mathematics in Science and Engineering, Vol 105. New York: Academic Press, 1973

    Google Scholar 

  11. Kolmanovskii V B, Nosov V R. Stability of functional differential equations. Mathematics in Science and Engineering, Vol 180. New York: Academic Press, 1986

    Google Scholar 

  12. Kolmanovskii V B, Myshkis A. Applied Theory of Functional Differential Equations. Boston: Kluwer Academic Publishers, 1992

    Book  MATH  Google Scholar 

  13. Dugard L, Verriest E I. Stability and Control of Time-delay Systems, London: Springer-Verlag, 1998

    Book  MATH  Google Scholar 

  14. Kolmanovskii V, Myshkis A. Applied theory of functional differential equations. Dordrecht: Kluwer, 1999

    MATH  Google Scholar 

  15. Niculescu SI. Delay Effects on Stability: A Robust Control Approach (Lecture Notes in Control and Information Sciences). London: Springer–Verlag, 2001

    Google Scholar 

  16. Boukas E K, Liu Z K. Deterministic and Stochastic Time Delay Systems. Boston: Birkhäuser, 2002.

    Book  MATH  Google Scholar 

  17. Chiasson J, Loiseau J J. Applications of Time Delay Systems (Lecture Notes in Control and Information Sciences). London: Springer–Verlag, 2007

    MATH  Google Scholar 

  18. Fridman E. New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems. System & Control Letters, 2001, 43: 309–319

    Article  MathSciNet  MATH  Google Scholar 

  19. Fridman E, Shaked U. An improved stabilization method for linear systems with time-delay. IEEE Transactions on Automatic Control, 2002, 47(11): 1931–1937

    Article  MathSciNet  MATH  Google Scholar 

  20. Fridman E, Orlov Y. Exponential stability of linear distributed parameter systems with time-varying delays. Automatica, 2009, 45(2): 194–201

    Article  MathSciNet  MATH  Google Scholar 

  21. Fridman E, Shaked U, Liu K. New conditions for delay-derivativedependent stability. Automatica, 2009, 45(11): 2723–2727

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu K, Fridman E. Wirtinger’s inequality and Lyapunov-based sampled-data stabilization. Automatica, 2012, 48(1): 102–108

    Article  MathSciNet  MATH  Google Scholar 

  23. Han Q L. Robust stability of uncertain delay-differential systems of neutral type. Automatica, 2002, 38(4): 719–723

    Article  MathSciNet  MATH  Google Scholar 

  24. Han Q L. On robust stability of neutral systems with time-varying discrete delay and norm-bounded uncertainty. Automatica, 2004, 40(6): 1087–1092

    Article  MathSciNet  MATH  Google Scholar 

  25. Jiang X, Han Q L. On H control for linear systems with interval time-varying delay. Automatica, 2005, 41(12): 2099–2106

    Article  MathSciNet  MATH  Google Scholar 

  26. Jiang X, Han Q L. Delay-dependent robust stability for uncertain linear systems with interval time-varying delay. Automatica, 2006, 42(6): 1059–1065

    Article  MathSciNet  MATH  Google Scholar 

  27. Gao H J, Wang C H. Comments and further results on “A descriptor system approach to H control of linear time-delay systems”. IEEE Transactions on Automatic Control, 2003, 48(3): 520–525

    Article  MathSciNet  MATH  Google Scholar 

  28. Gao H J, Wang C H. A delay-dependent approach to robust H filtering for uncertain discrete-time state-delayed systems. IEEE Transactions on Signal Processing, 2004, 52(6): 1631–1640

    Article  MathSciNet  Google Scholar 

  29. Gao H J, Meng X Y, Chen T W. Stabilization of networked control systems with a new delay characterization. IEEE Transactions on Automatic Control, 2008, 53(9): 2142–2148

    Article  MathSciNet  Google Scholar 

  30. Lam J, Gao H J, Wang C H. Stability analysis for continuous systems with two additive time-varying delay components. Systems & Control Letters, 2007, 56(1): 16–24

    Article  MathSciNet  MATH  Google Scholar 

  31. Yue D, Han Q L, Peng C. State feedback controller design of networked control systems. IEEE Transactions on Circuits and Systems—II: Express Briefs, 2004, 41: 640–644

    Article  Google Scholar 

  32. Yue D, Han Q L, Lam J. Network-based robust H control of systems with uncertainty. Automatica, 2005, 41(6): 999–1007

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu S Y, Lam J. Improved delay-dependent stability criteria for timedelay systems. IEEE Transactions on Automatic Control, 2005, 50(3): 384–387

    Article  MathSciNet  MATH  Google Scholar 

  34. Xu S Y, Lam J, Zou Y. Further results on delay-dependent robust stability conditions of uncertain neutral systems. International Journal of Robust and Nonlinear Control, 2005, 15(5): 233–246

    Article  MathSciNet  MATH  Google Scholar 

  35. Li X, De Souza C E. Delay-dependent robust stability and stabilisation of uncertain linear delay systems: a linear matrix inequality approach. IEEE Transactions on Automatic Control, 1997, 42(8): 1144–1148

    Article  MathSciNet  MATH  Google Scholar 

  36. Shao H Y. Improved delay-dependent stability criteria for systems with a delay varying in a range. Automatica, 2008, 44(12): 3215–3218

    Article  MathSciNet  MATH  Google Scholar 

  37. Shao H Y. New delay-dependent stability criteria for systems with interval delay. Automatica, 2009, 45(3): 744–749

    Article  MathSciNet  MATH  Google Scholar 

  38. Chen W H, Zheng W X. Delay-dependent robust stabilization for uncertain neutral systems with distributed delays. Automatica, 2007, 43(1): 95–104

    Article  MathSciNet  MATH  Google Scholar 

  39. Mahmoud M S. Resilient L 2L filtering of polytopic systems with state delays. IET Control Theory & Applications, 2007, 1(1): 141–154

    Article  MathSciNet  Google Scholar 

  40. Zhang XM, Han Q L. Abel lemma-based finite-sum inequality and its application to stability analysis for linear discrete time-delay systems. Automatica, 2015, 57: 199–202

    Article  MathSciNet  MATH  Google Scholar 

  41. Liu K, Fridman E, Johansson K H, Xia Y. Generalized Jensen inequalities with application to stability analysis of systems with distributed delays over infinite time-horizons. Automatica, 2016, 69: 222–231

    Article  MathSciNet  MATH  Google Scholar 

  42. Chen Y G, Fei S M, Gu Z, Li Y M. New mixed-delay-dependent robust stability conditions for uncertain linear neutral systems. IET Control Theory Applications, 2014, 8(8): 606–613

    Article  MathSciNet  Google Scholar 

  43. Zhang B Y, Lam J, Xu S Y. Stability analysis of distributed delay neural networks based on relaxed Lyapunov-Krasovskii functionals. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(7): 1480–1492

    Article  MathSciNet  Google Scholar 

  44. Peng D, Hua C C. Improved approach to delay-dependent stability and stabilisation of two-dimensional discrete-time systems with interval time-varying delays. IET Control Theory Applications, 2015, 9(12): 1839–1845

    Article  MathSciNet  Google Scholar 

  45. Li J, Chen Z H, Cai D S, Zhen W, Huang Q. Delay-Dependent stability control for power system with multiple time-delays. IEEE Transactions on Power Systems, 2016, 31(3): 2316–2326

    Article  Google Scholar 

  46. Ding L, He Y, Wu M, Ning C. Improved mixed-delay-dependent asymptotic stability criteria for neutral systems. IET Control Theory Applications, 2015, 9(14): 2180–2187

    Article  MathSciNet  Google Scholar 

  47. Zhang C K, He Y, Jiang L, Wu M, Zeng H B. Delay-variationdependent stability of delayed discrete-time systems. IEEE Transactions on Automatic Control, 2015

    Google Scholar 

  48. Boyd S, Ghaoui L E, Feron E, Balakrishnan V. Linear Matrix Inequality in Systems and Control Theory (SIAM Studies in Applied Mathematics). Philadelphia, PA: SIAM, 1994

    Book  MATH  Google Scholar 

  49. Hale J K, Lunel S M V. Introduction to functional differential equations. New York: Springer, 1993

    Book  MATH  Google Scholar 

  50. Gu K, Kharitonov V L, Chen J. Stability of Time-delay Systems, Boston: Brikhäuser, 2003

    Book  MATH  Google Scholar 

  51. Fridman E. Introduction to Time-delay Systems: Analysis and Control (Systems and Control: Foundations and Applications). Springer, 2014

    MATH  Google Scholar 

  52. Wu M, He Y, She J H, Liu G P. New delay-dependent stability criteria for robust stability of time-varying delay systems. Automatica, 2004; 40(8): 1435–1439

    Article  MathSciNet  MATH  Google Scholar 

  53. He Y, Wang Q G, Lin C, Wu M. Augmented Lyapunov functional and delay-dependent stability criteria for neutral systems. International Journal of Robust and Nonlinear Control, 2005, 15(18): 923–933

    Article  MathSciNet  MATH  Google Scholar 

  54. He Y, Wang Q G, Xie L, Lin C. Further improvement of freeweighting matrices technique for systems with time-varying delay. IEEE Transactions on Automatic Control, 2007, 52(2): 293–299

    Article  MathSciNet  Google Scholar 

  55. Sun J, Liu G P, Chen J. Delay-dependent stability and stabilization of neutral time-delay systems. International Journal of Robust and Nonlinear Control, 2009, 19(12): 1364–1375

    Article  MathSciNet  MATH  Google Scholar 

  56. Sun J, Liu G P. On improved delay-dependent stability criteria for neutral time-delay systems. European Journal of Control, 2009, 15(6): 613–623

    Article  MathSciNet  MATH  Google Scholar 

  57. Sun J, Chen J, Liu G P, Rees D. Delay-dependent robust H filter design for uncertain linear systems with time-varying delay. Circuits, Systems, and Signal Processing, 2009, 28(5): 763–775

    Article  MathSciNet  MATH  Google Scholar 

  58. Sun J, Liu G P, Chen J, Rees D. Improved stability criteria for neural networks with time-varying delay. Physics Letters A, 2009, 373(3): 342–348

    Article  MATH  Google Scholar 

  59. Sun J, Liu G P. A new delay-dependent stability criterion for timedelay systems. Asian Journal of Control, 2009, 11(4): 427–431

    Article  MathSciNet  Google Scholar 

  60. Sun J, Chen J, Liu G P, Rees D. Delay-range-dependent and raterange- dependent stability criteria for linear systems with time-varying delays. In: Proceedings of IEEE Conference on Decision and Control. 2009, 251–256

    Google Scholar 

  61. Sun J, Chen J, Liu G P, Rees D. On robust stability of uncertain neutral systems with discrete and distributed delays. In: Proceedings of American Control Conference. 2009, 5469–5473

    Google Scholar 

  62. Sun J, Liu G P, Chen J, Rees D. Improved delay-range-dependent stability criteria for linear systems with time-varying delays. Automatica, 2010, 46(2): 466–470

    Article  MathSciNet  MATH  Google Scholar 

  63. Sun J, Liu G P, Chen J, Rees D. Improved stability criteria for linear systems with time-varying delay. IET Control Theory & Applications, 2010, 4(4): 683–689

    Article  MathSciNet  Google Scholar 

  64. Chen J, Sun J, Liu G P, Rees D. New delay-dependent stability criteria for neural networks with time-varying interval delay. Physics Letters A, 2010, 374(43): 4397–4405

    Article  MathSciNet  MATH  Google Scholar 

  65. Qian W, Cong S, Li T, Fei S M. Improved stability conditions for systems with interval time-varying delay. International Journal of Control, Automation, and Systems, 2012, 10(6): 1146–1152

    Article  Google Scholar 

  66. Lee WI, Jeong C, Park P G. Further improvement of delay-dependent stability criteria for linear systems with time-varying delays. In: Proceedings of the 12th International Conference on Control, Automation and Systems. 2012, 1300–1304

    Google Scholar 

  67. Liu J, Hou ZW. New stability analysis for systems with interval timevarying delay based on Lyapunov functional method. Journal of Information & Computational Science, 2014, 11(6): 1843–1851

    Article  Google Scholar 

  68. He Y, Wang Q G, Lin C, Wu M. Delay-dependent stability for systems with time-varying delay. Automatica, 2007, 43(2): 371–376

    Article  MathSciNet  MATH  Google Scholar 

  69. Sun J, Han Q L, Chen J, Liu G P. Less conservative stability criteria for linear systems with interval time-varying delays. International Journal of Robust and Nonlinear Control, 2015, 25(40): 475–485

    Article  MathSciNet  MATH  Google Scholar 

  70. Sun J, Chen J. Stability analysis of static recurrent neural networks with interval time-varying delay. Applied Mathematics and Computation, 2013, 221(15): 111–120

    Article  MathSciNet  MATH  Google Scholar 

  71. Qian W, Liu J, Fei SM. New augmented Lyapunov functional method for stability of uncertain neutral systems with equivalent delays. Mathematics and Computers in Simulation, 2012, 84: 42–50

    Article  MathSciNet  MATH  Google Scholar 

  72. Gu K. Discretized LMI set in the stability problem of linear uncertain time-delay systems. International Journal of Control, 1997, 68(4): 923–934

    Article  MathSciNet  MATH  Google Scholar 

  73. Gu K, Han Q L, Luo A C J, Niculescu S I. Discretized Lyapunov functional for systems with distributed delay and piecewise constant coefficients. International Journal of Control, 2001, 74(7): 737–744

    Article  MathSciNet  MATH  Google Scholar 

  74. Gu K. An improved stability criterion for systems with distributed delays. International Journal of Robust and Nonlinear Control, 2003, 13(9): 819–831

    Article  MathSciNet  MATH  Google Scholar 

  75. Kharitonov V L, Niculescu S I. On the stability of linear systems with uncertain delay. IEEE Transactoins on Automatic Control, 2003, 48(1): 127–132

    Article  MathSciNet  MATH  Google Scholar 

  76. Kharitonov V L, Zhabko A P. Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems. Automatica, 2003, 39(1): 15–20

    Article  MathSciNet  MATH  Google Scholar 

  77. Fridman E, Niculescu S I. On complete Lyapunov-Krasovskii functional techniques for uncertain systems with fast-varying delays. International Journal of Robust Nonlinear Control, 2008, 18(3): 364–374

    Article  MathSciNet  MATH  Google Scholar 

  78. He Y, Liu G P, Rees D. New delay-dependent stability criteria for neural networks with time-varying delay. IEEE Transactions on Neural Network, 2007, 18(1): 310–314

    Article  Google Scholar 

  79. He Y, Wu M, Liu G P, She J H. Output feedback stabilization for a discrete-time systems with a time-varying delay. IEEE Transactions on Automatic Control, 2008, 53(10): 2372–2377

    Article  MathSciNet  Google Scholar 

  80. Fridman E, Shaked U. Delay-dependent stability and H control: constant and time-varying delays. International Journal of Control, 2003, 76(1): 48–60

    Article  MathSciNet  MATH  Google Scholar 

  81. Park P. A delay-dependent stability criterion for systems with uncertain time-invariant delays. IEEE Transactions on Automatic Control, 1999, 44(4): 876–877

    Article  MathSciNet  MATH  Google Scholar 

  82. Moon Y S, Park P, Kwon W H, Lee Y S. Delay-dependent robust stabilization of uncertain state-delayed systems. International Journal of Control, 2001, 74(14): 1447–1455

    Article  MathSciNet  MATH  Google Scholar 

  83. WuM, He Y, She J H. Stability Analyssi and Robust Control of Timedelay Systems. London: Springer, 2010.

    Google Scholar 

  84. Xu S, Lam J. A survey of linear matrix inequality techniques in stability analysis of delay systems. International Journal of Systems Science, 2008, 39(12): 1095–1113

    Article  MathSciNet  MATH  Google Scholar 

  85. He Y, Wu M, She J H, Liu G P. Parameter-dependent Lyapunov for stability of time-delay systems with polytopic-type uncertainties. IEEE Transactions on Automatic Control, 2004, 49(5): 828–832

    Article  MathSciNet  MATH  Google Scholar 

  86. He Y,Wu M, She J H. An improved H filter design for systems with time-varying interval delay. IEEE Transactions on Signal Processing, 2006, 53(11): 1235–1239

    Google Scholar 

  87. He Y, Wu M, She J H. An improved global asymptotic stability criterion for delayed cellular neural networks. IEEE Transactions on Neural Network, 2006, 17(1): 250–252

    Article  Google Scholar 

  88. He Y, Wu M, She J H. Delay-dependent exponential stability of delayed neural networks with time-varying delay. IEEE Transactions on Circuits and Systems—II: Express Briefs, 2006, 53(7): 553–557

    Article  Google Scholar 

  89. Wu M, He Y, She J H. New delay-dependent stability criteria and stabilising method for neutral systems. IEEE Transactions on Automatic Control, 2004, 49(12): 2266–2271

    Article  MathSciNet  MATH  Google Scholar 

  90. Zhang X M, Wu M, She J H, He Y. Delay-dependent stabilization of linear systems with time-varying state and input delays. Automatica, 2005, 41(8): 1405–1412

    Article  MathSciNet  MATH  Google Scholar 

  91. Zeng H B, He Y, Wu M, She J H. Free-matrix-based integral inequality for stability analysis of systems with time-varying delay. IEEE Transactions on Automatic Control, 2015, 60(10): 2768–2772

    Article  MathSciNet  MATH  Google Scholar 

  92. Gu K. An integral inequality in the stability problem of time-delay systems. In: Proceedings of the 39th IEEE Conference on Decision and Control. 2000, 2805–2810

    Google Scholar 

  93. Gahinet P, Apkarian P. A linear matrix inequality approach to H control. International Journal of Robust and Nonlinear Control, 1994, 4(4): 421–448

    Article  MathSciNet  MATH  Google Scholar 

  94. Gouaisbaut F, Peaucelle D. A note on stability of time delay systems. In: Proceedings of the 5th IFAC Symposium on Robust Control Design. 2006

    Google Scholar 

  95. Gouaisbaut F, Peaucelle D. Delay-dependent robust stability of time delay systems. In: Proceedings of the 5th IFAC Symposium on Robust Control Design. 2006

    Google Scholar 

  96. Suplin V, Fridman E, Shaked U. H control of linear uncertain timedelay systems–a projection approach. IEEE Transactions on Automatic Control, 2006, 51(4): 680–685

    Article  MathSciNet  Google Scholar 

  97. Zhang X M, Han Q L. Novel delay-derivative-dependent stability criteria using new bounding techniques. International Journal of Robust and Nonlinear Control, 2013, 23(13): 1419–1432

    Article  MathSciNet  MATH  Google Scholar 

  98. Briat C. Convergence and equivalence results for the Jensen’s inequality—application to time-delay and sampled-data systems. IEEE Transactions on Automatic Control, 2011, 56(7): 1660–1665

    Article  MathSciNet  Google Scholar 

  99. Seuret A, Gouaisbaut F. Wirtinger-based integral inequality: application to time-delay systems. Automatica, 2013, 49(9): 2860–2866

    Article  MathSciNet  MATH  Google Scholar 

  100. Seuret A, Gouaisbaut F, Fridman E. Stability of systems with fastvarying delay using improved wirtinger’s inequality. In: Proceedings of the 52nd IEEE Conference on Decision and Control. 2013, 946–951

    Chapter  Google Scholar 

  101. Ji X F, Su H Y. A note on equivalence between two integral inequalities for time-delay systems. Automatica, 2015, 53: 244–246

    Article  MathSciNet  Google Scholar 

  102. Gyurkovics E. A note onWirtinger-type integral inequalities for timedelay systems. Automatica, 2015, 61: 44–46

    Article  MathSciNet  MATH  Google Scholar 

  103. Park M, Kwon O, Park JH, Lee S, Cha E. Stability of time-delay systems via Wirtinger-based double integral inequality. Automatica, 2015, 55: 204–208

    Article  MathSciNet  Google Scholar 

  104. Hien L V, Trinh H. Refined Jensen-based inequality approach to stability analysis of time-delay systems. IET Control Theory & Applications, 2015, 9(14): 2188–2194

    Article  MathSciNet  Google Scholar 

  105. Park P G, Lee W, Lee S Y. Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems. Journal of the Franklin Institute, 2015, 352(4): 1378–1396

    Article  MathSciNet  Google Scholar 

  106. Kim J H. Further improvement of Jensen inequality and application to stability of time-delayed systems. Automatica, 2016, 61: 121–125

    Article  MathSciNet  MATH  Google Scholar 

  107. Park P, Ko J W. Stability and robust stability for systems with a timevarying delay. Automatica, 2007, 43(10): 1855–1858

    Article  MathSciNet  MATH  Google Scholar 

  108. Kim J H. Note on stability of linear systems with time-varying delay. Automatica, 2011, 47(9): 2118–2121

    Article  MathSciNet  MATH  Google Scholar 

  109. Park P, Ko JW, Jeong C. Reciprocally convex approach to stability of systems with time-varying delays. Automatica, 2011, 47(1): 235–238

    Article  MathSciNet  MATH  Google Scholar 

  110. Lee WI, Park P. Second-order reciprocally convex approach to stability of systems with interval time-varying delays. Applied Mathematics and Computation, 2014, 229: 245–253

    Article  MathSciNet  MATH  Google Scholar 

  111. Zhu X L, Wang Y, Yang G H. New stability criteria for continuoustime systems with interval time-varying delay. IET Control Theory & Applications, 2010, 4(6): 1101–1107

    Article  MathSciNet  Google Scholar 

  112. Tang M, Wang Y W, Wen C. Improved delay-range-dependent stability criteria for linear systems with interval time-varying delays. IET Control Theory & Applications, 2012, 6(6): 868–873

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 61104097, 61321002, 61120106010, 61522303, and U1509215), Program for Changjiang Scholars and Innovative Research Team in University (IRT1208), ChangJiang Scholars Program, Beijing Outstanding PhD Program Mentor (20131000704), Program for New Century Excellent Talents in University (NCET-13-0045), and Beijing Higher Education Young Elite Teacher Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Sun.

Additional information

Jian Sun received his PhD Degree from the Institute of Automation, Chinese Academy of Sciences, China in 2007. He is currently a professor in the School of Automation, Beijing Institute of Technology, China. His current research interests include networked control systems, timedelay systems, security of CPSs, and robust control. He is the awardee of the NSFC Excellent Young Scholars Program in 2015.

Jie Chen is a professor at School of Automation, Beijing Institute of Technology, China. His research interest covers complex system multi-objective optimization and decision, constrained nonlinear control, and optimization methods.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Chen, J. A survey on Lyapunov-based methods for stability of linear time-delay systems. Front. Comput. Sci. 11, 555–567 (2017). https://doi.org/10.1007/s11704-016-6120-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11704-016-6120-3

Keywords

Navigation