Skip to main content
Log in

Incomplete data management: a survey

  • Review Article
  • Published:
Frontiers of Computer Science Aims and scope Submit manuscript

Abstract

Incomplete data accompanies our life processes and covers almost all fields of scientific studies, as a result of delivery failure, no power of battery, accidental loss, etc. However, how to model, index, and query incomplete data incurs big challenges. For example, the queries struggling with incomplete data usually have dissatisfying query results due to the improper incompleteness handling methods. In this paper, we systematically review the management of incomplete data, including modelling, indexing, querying, and handling methods in terms of incomplete data. We also overview several application scenarios of incomplete data, and summarize the existing systems related to incomplete data. It is our hope that this survey could provide insights to the database community on how incomplete data is managed, and inspire database researchers to develop more advanced processing techniques and tools to cope with the issues resulting from incomplete data in the real world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedman T, Smith M. Measuring the business value of data quality. Gartner, 2011

    Google Scholar 

  2. Graham J. Missing Data: Analysis and Design. Springer Science & Business Media, 2012

    Book  MATH  Google Scholar 

  3. Imieli´nski T, Lipski Jr W. Incomplete information in relational databases. Journal of the ACM, 1984, 31(4): 761–791

    Article  MathSciNet  MATH  Google Scholar 

  4. Abiteboul S, Kanellakis P, Grahne G. On the representation and querying of sets of possible worlds. Theoretical Computer Science, 1991, 78(1): 159–187

    Article  MathSciNet  MATH  Google Scholar 

  5. Green T J, Tannen V. Models for incomplete and probabilistic information. In: Proceedings of International Conference on Extending Database Technology. 2006, 278–296

    Google Scholar 

  6. Antova L, Koch C, Olteanu D. From complete to incomplete information and back. In: Proceedings of ACM SIGMOD International Conference on Management of Data. 2007, 713–724

    Google Scholar 

  7. Libkin L. Incomplete information and certain answers in general data models. In: Proceedings of ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. 2011, 59–70

    Google Scholar 

  8. Ooi B C, Goh C H, Tan K L. Fast high-dimensional data search in incomplete databases. In: Proceedings of International Conference on Very Large Data Bases. 1998, 357–367

    Google Scholar 

  9. Canahuate G, Gibas M, Ferhatosmanoglu H. Indexing incomplete databases. In: Proceedings of International Conference on Extending Database Technology. 2006, 884–901

    Google Scholar 

  10. Khalefa M E, Mokbel M F, Levandoski J J. Skyline query processing for incomplete data. In: Proceedings of the 24th IEEE International Conference on Data Engineering. 2008, 556–565

    Google Scholar 

  11. Gao Y, Miao X, Cui H, Chen G, Li Q. Processing k-skyband, constrained skyline, and group-by skyline queries on incomplete data. Expert Systems with Applications, 2014, 41(10): 4959–4974

    Article  Google Scholar 

  12. Lofi C, El Maarry K, Balke W T. Skyline queries in crowd-enabled databases. In: Proceedings of International Conference on Extending Database Technology. 2013, 465–476

    Google Scholar 

  13. Cheng W, Jin X, Sun J T, Lin X, Zhang X, Wang W. Searching dimension incomplete databases. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(3): 725–738

    Article  Google Scholar 

  14. Olteanu D, Koch C, Antova L. World-set decompositions: Expressiveness and efficient algorithms. Theoretical Computer Science, 2008, 403(2): 265–284

    Article  MathSciNet  MATH  Google Scholar 

  15. Arenas M, Pérez J, Reutter J. Data exchange beyond complete data. Journal of the ACM, 2013, 60(4): 28

    Article  MathSciNet  MATH  Google Scholar 

  16. Libkin L. Data exchange and incomplete information. In: Proceedings of ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. 2006

    Google Scholar 

  17. Kharlamov E, Nutt W. Incompleteness in information integration. Proceedings of the VLDB Endowment, 2008, 1(2): 1652–1658

    Article  Google Scholar 

  18. Eiter T, Nowicki B, Leone N, Lembo D, Rosati R, Staniszkis W, Ruzzi M, Terracina G, Lio V, Kalka E, Fink M, Greco G, Faber W, Lenzerini M, Ianni G, Gottlob G. The INFOMIX system for advanced integration of incomplete and inconsistent data. In: Proceedings of ACM SIGMOD International Conference on Management of Data. 2005, 915–917

    Google Scholar 

  19. Van der Meyden R. Logical approaches to incomplete information: a survey. In: Chomicki J, Saake G, eds. Logics for Databases and Information Systems. Springer, 1998, 307–356

    Chapter  Google Scholar 

  20. Guttman A. R-trees: A Dynamic Index Structure for Spatial Searching. Vol 14. ACM, 1984

    Book  Google Scholar 

  21. Miao X, Gao Y, Zheng B, Chen G, Cui H. Top-k dominating queries on incomplete data. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(1): 252–266

    Article  Google Scholar 

  22. Miao X, Gao Y, Chen G, Zheng B, Cui H. Processing incomplete k nearest neighbor search. IEEE Transactions on Fuzzy Systems, 2016

    Google Scholar 

  23. Brinis S, Traina A J M, Traina Jr C. Analyzing missing data in metric spaces. Journal of Information and Data Management, 2014, 5(3): 224

    Google Scholar 

  24. Borzsonyi S, Kossmann D, Stocker K. The skyline operator. In: Proceedings of the 11th IEEE International Conference on Data Engineering. 2001, 421–430

    Chapter  Google Scholar 

  25. Bharuka R, Kumar P S. Finding skylines for incomplete data. In: Proceedings of Australasian Database Conference. 2013, 109–117

    Google Scholar 

  26. Miao X, Gao Y, Chen L, Chen G, Li Q, Jiang T. On efficient k-skyband query processing over incomplete data. In: Proceedings of International Conference on Database Systems for Advanced Applications. 2013, 424–439

    Chapter  Google Scholar 

  27. Babanejad G, Ibrahim H, Udzir N I, Sidi F, Aljuboori A A A. Finding skyline points over dynamic incomplete database. In: Malaysian National Conference on Databases. 2014

    Google Scholar 

  28. Bharuka R, Kumar P S. Finding superior skyline points from incomplete data. In: Proceedings of International Conference on Management of Data. 2013, 35–44

    Google Scholar 

  29. Soliman M A, Ilyas I F, Ben-David S. Supporting ranking queries on uncertain and incomplete data. The VLDB Journal, 2010, 19(4): 477–501

    Article  Google Scholar 

  30. Zhang Z, Lu H, Ooi B C, Tung A K. Understanding the meaning of a shifted sky: a general framework on extending skyline query. The VLDB Journal, 2010, 19(2): 181–201

    Article  Google Scholar 

  31. Franklin M J, Kossmann D, Kraska T, Ramesh S, Xin R. CrowdDB: Answering queries with crowdsourcing. In: Proceedings of ACM SIGMOD International Conference on Management of Data. 2011, 61–72

    Google Scholar 

  32. Lofi C, El Maarry K, Balke W T. Skyline queries over incomplete data-error models for focused crowd-sourcing. In: Proceedings of International Conference on Conceptual Modeling. 2013, 298–312

    Chapter  Google Scholar 

  33. Nieke C, Güntzer U, Balke W T. Topcrowd. In: Proceedings of International Conference on Conceptual Modeling. 2014, 122–135

    Google Scholar 

  34. Dixon J K. Pattern recognition with partly missing data. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(10): 617–621

    Article  Google Scholar 

  35. Cheng W, Jin X, Sun J T. Probabilistic similarity query on dimension incomplete data. In: Proceedings of IEEE International Conference on Data Mining. 2009, 81–90

    Google Scholar 

  36. Cuzzocrea A, Nucita A. I-SQE: a query engine for answering range queries over incomplete spatial databases. In: Proceedings of International Conference on Knowledge-Based and Intelligent Information and Engineering Systems. 2009, 91–101

    Google Scholar 

  37. Cuzzocrea A, Nucita A. Reasoning on incompleteness of spatial information for effectively and efficiently answering range queries over incomplete spatial databases. In: Proceedings of International Conference on Flexible Query Answering Systems. 2009, 37–52

    Chapter  Google Scholar 

  38. Haghani P, Michel S, Aberer K. Evaluating top-k queries over incomplete data streams. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management. 2009, 877–886

    Google Scholar 

  39. Kolomvatsos K, Anagnostopoulos C, Hadjiefthymiades S. A time optimized scheme for top-k list maintenance over incomplete data streams. Information Sciences, 2015, 311: 59–73

    Article  Google Scholar 

  40. Ma Z, Zhang K, Wang S, Yu C. A double-index-based k-dominant skyline algorithm for incomplete data stream. In: Proceedings of the 4th IEEE International Conference on Software Engineering and Service Science. 2013, 750–753

    Google Scholar 

  41. Abiteboul S, Segoufin L, Vianu V. Representing and querying XML with incomplete information. ACM Transactions on Database Systems, 2006, 31(1): 208–254

    Article  Google Scholar 

  42. Barceló P, Libkin L, Poggi A, Sirangelo C. XML with incomplete information: models, properties, and query answering. In: Proceedings of ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. 2009, 237–246

    Google Scholar 

  43. Barceló P, Libkin L, Poggi A, Sirangelo C. XML with incomplete information. Journal of the ACM, 2010, 58(1): 4

    Article  MathSciNet  MATH  Google Scholar 

  44. David C, Libkin L, Murlak F. Certain answers for XML queries. In: Proceedings of ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. 2010, 191–202

    Google Scholar 

  45. Gheerbrant A, Libkin L, Tan T. On the complexity of query answering over incomplete XML documents. In: Proceedings of the 15th ACM International Conference on Database Theory. 2012, 169–181

    Google Scholar 

  46. Gheerbrant A, Libkin L. Certain answers over incomplete XML documents: extending tractability boundary. Theory of Computing Systems, 2015, 57(4): 892–926

    Article  MathSciNet  MATH  Google Scholar 

  47. Nikolaou C, Koubarakis M. Querying incomplete geospatial information in RDF. In: Proceedings of International Symposium on Spatial and Temporal Databases. 2013, 447–450

    Chapter  Google Scholar 

  48. Pema E, Tan W C. Query answering over incomplete and uncertain RDF. International Workshop on the Web and Databases, 2014

    Google Scholar 

  49. Twala B, Cartwright M, Shepperd M. Comparison of various methods for handling incomplete data in software engineering databases. In: Proceedings of IEEE International Symposium on Empirical Software Engineering. 2005

    Google Scholar 

  50. Little R J A, Rubin D B. Statistical Analysis with Missing Data. New York: John Wiley & Sons, 2014

    MATH  Google Scholar 

  51. García-Laencina P J, Sancho-Gómez J L, Figueiras-Vidal A R. Pattern classification with missing data: a review. Neural Computing and Applications, 2010, 19(2): 263–282

    Article  Google Scholar 

  52. Rubin D B. Multiple Imputation for Nonresponse in Surveys. Vol 81. New York: John Wiley & Sons, 2004

    MATH  Google Scholar 

  53. Manly B F J. Multivariate statistical methods: a primer. Boca Raton: CRC Press, 1994

    MATH  Google Scholar 

  54. Van Hulle MM. Self-organizing maps. In: Rozenberg G, Bäck T, Kok J N, eds. Handbook of Natural Computing. Berlin: Springer, 2012, 585–622

    Chapter  Google Scholar 

  55. Samad T, Harp S A. Self–organization with partial data. Network: Computation in Neural Systems, 2009

    Google Scholar 

  56. Fessant F, Midenet S. Self-organising map for data imputation and correction in surveys. Neural Computing & Applications, 2002, 10(4): 300–310

    Article  MATH  Google Scholar 

  57. Farhangfar A, Kurgan L, Pedrycz W. A novel framework for imputation of missing values in databases. IEEE Transactions on Systems, Man, and Cybernetics, 2007, 37(5): 692–709

    Article  Google Scholar 

  58. Jerez J M, Molina I, García-Laencina P J, Alba E, Ribelles N, Martín M, Franco L. Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artificial Intelligence in Medicine, 2010, 50(2): 105–115

    Article  Google Scholar 

  59. Schmitt P, Mandel J, Guedj M. A comparison of six methods for missing data imputation. Journal of Biometrics & Biostatistics, 2015

    Google Scholar 

  60. Zhu X, Zhang S, Jin Z, Zhang Z, Xu Z. Missing value estimation for mixed-attribute data sets. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(1): 110–121

    Article  Google Scholar 

  61. Lobato F, Sales C, Araujo I, Tadaiesky V, Dias L, Ramos L, Santana A. Multi-objective genetic algorithm for missing data imputation. Pattern Recognition Letters, 2015, 68: 126–131

    Article  Google Scholar 

  62. García J C F, Kalenatic D, Bello C A L. Missing data imputation in multivariate data by evolutionary algorithms. Computers in Human Behavior, 2011, 27(5): 1468–1474

    Article  Google Scholar 

  63. Krishna M, Ravi V. Particle swarm optimization and covariance matrix based data imputation. In: Proceedings of IEEE International Conference on Computational Intelligence and Computing Research. 2013, 1–6

    Google Scholar 

  64. Gautam C, Ravi V. Evolving clustering based data imputation. In: Proceedings of International Conference on Circuit, Power and Computing Technologies. 2014, 1763–1769

    Google Scholar 

  65. Gautam C, Ravi V. Data imputation via evolutionary computation, clustering and a neural network. Neurocomputing, 2015, 156: 134–142

    Article  Google Scholar 

  66. Hung N Q V, Thang D C, Weidlich M, Aberer K. Minimizing efforts in validating crowd answers. In: Proceedings of ACM SIGMOD International Conference on Management of Data. 2015, 999–1014

    Google Scholar 

  67. Trushkowsky B, Kraska T, Franklin MJ, Sarkar P. Crowdsourced enumeration queries. In: Proceedings of the 29th IEEE International Conference on Data Engineering. 2013, 673–684

    Google Scholar 

  68. Chu X, Morcos J, Ilyas I F, Ouzzani M, Papotti P, Tang N, Ye Y. KATARA: a data cleaning system powered by knowledge bases and crowdsourcing. In: Proceedings of ACM SIGMOD International Conference on Management of Data. 2015, 1247–1261

    Google Scholar 

  69. Li Z, Sharaf M A, Sitbon L, Sadiq S, Indulska M, Zhou X. A webbased approach to data imputation. World Wide Web, 2014, 17(5): 873–897

    Article  Google Scholar 

  70. Li Z, Shang S, Xie Q, Zhang X. Cost reduction for Web-based data imputation. In: Proceedings of International Conference on Database Systems for Advanced Applications. 2014, 438–452

    Chapter  Google Scholar 

  71. Li Z, Qin L, Cheng H, Zhang X, Zhou X. TRIP: an interactive retrieving-inferring data imputation approach. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(9): 2550–2563

    Article  Google Scholar 

  72. Elmeleegy H, Madhavan J, Halevy A. Harvesting relational tables from lists on the Web. Proceedings of the VLDB Endowment, 2009, 2(1): 1078–1089

    Article  Google Scholar 

  73. Gupta R, Sarawagi S. Answering table augmentation queries from unstructured lists on theWeb. Proceedings of the VLDB Endowment, 2009, 2(1): 289–300

    Article  Google Scholar 

  74. Yakout M, Ganjam K, Chakrabarti K, Chaudhuri S. Infogather: Entity augmentation and attribute discovery by holistic matching with Web tables. In: Proceedings of ACM SIGMOD International Conference on Management of Data. 2012, 97–108

    Google Scholar 

  75. Fan W, Li J, Ma S, Tang N, Yu W. Towards certain fixes with editing rules and master data. Proceedings of the VLDB Endowment, 2010, 3(1-2): 173–184

    Article  Google Scholar 

  76. Song S, Chen L. Differential dependencies: reasoning and discovery. ACM Transactions on Database Systems, 2011, 36(3): 16

    Article  Google Scholar 

  77. Song S, Zhang A, Chen L, Wang J. Enriching data imputation with extensive similarity neighbors. Proceedings of the VLDB Endowment, 2015, 8(11): 1286–1297

    Article  Google Scholar 

  78. Fan W. Dependencies revisited for improving data quality. In: Proceedings of ACM SIGMOD International Conference on Management of Data. 2008, 159–170

    Google Scholar 

  79. Zhang S, Jin Z, Zhu X. Missing data imputation by utilizing information within incomplete instances. Journal of Systems and Software, 2011, 84(3): 452–459

    Article  Google Scholar 

  80. Aydilek I B, Arslan A. A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm. Information Sciences, 2013, 233: 25–35

    Article  Google Scholar 

  81. Nelwamondo F V, Golding D, Marwala T. A dynamic programming approach to missing data estimation using neural networks. Information Sciences, 2013, 237: 49–58

    Article  MathSciNet  Google Scholar 

  82. Pan R, Yang T, Cao J, Lu K, Zhang Z. Missing data imputation by k nearest neighbours based on grey relational structure and mutual information. Applied Intelligence, 2015, 43(3): 614–632

    Article  Google Scholar 

  83. Tian J, Yu B, Yu D, Ma S. Missing data analyses: A hybrid multiple imputation algorithm using Gray System Theory and entropy based on clustering. Applied Intelligence, 2014, 40(2): 376–388

    Article  Google Scholar 

  84. Grzymala-Busse J W, Wang A Y. Modified algorithms LEM1 and LEM2 for rule induction from data with missing attribute values. In: Proceedings of the 5th International Workshop on Rough Sets and Soft Computing at the 3rd Joint Conference on Information Sciences. 1997, 69–72

    Google Scholar 

  85. Grzymala-Busse J W. Rough set strategies to data with missing attribute values. In: Lin T Y, Ohsuga S, Liau C J, et al., eds. Foundations and Novel Approaches in Data Mining. Studies in Computational Intelligence, Vol 9. Berlin: Springer, 2006, 197–212

    Google Scholar 

  86. Junior J R B, do Carmo Nicoletti M, Zhao L. An embedded imputation method via attribute-based decision graphs. Expert Systems with Applications, 2016, 57: 159–177

    Article  Google Scholar 

  87. Zhong C, Pedrycz W, Wang D, Li L, Li Z. Granular data imputation: a framework of granular computing. Applied Soft Computing, 2016, 46: 307–316

    Article  Google Scholar 

  88. Liu S, Dai H, Gan M. Information-decomposition-model-based missing value estimation for not missing at random dataset. International Journal of Machine Learning and Cybernetics, 2015, 1–11

    Google Scholar 

  89. Leke C, Marwala T, Paul S. Proposition of a theoretical model for missing data imputation using deep learning and evolutionary algorithms. 2015, arXiv:1512.01362

    Google Scholar 

  90. Asif M T, Mitrovic N, Garg L, Dauwels J, Jaillet P. Low-dimensional models for missing data imputation in road networks. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. 2013, 3527–3531

    Google Scholar 

  91. Cismondi F, Fialho A S, Vieira S M, Reti S R, Sousa J M, Finkelstein S N. Missing data in medical databases: impute, delete or classify? Artificial Intelligence in Medicine, 2013, 58(1): 63–72

    Article  Google Scholar 

  92. Cheema J R. A review of missing data handling methods in education research. Review of Educational Research, 2014, 84(4): 487–508

    Article  Google Scholar 

  93. Enders C K. Dealing with missing data in developmental research. Child Development Perspectives, 2013, 7(1): 27–31

    Article  MathSciNet  Google Scholar 

  94. Aste M, Boninsegna M, Freno A, Trentin E. Techniques for dealing with incomplete data: a tutorial and survey. Pattern Analysis and Applications, 2015, 18(1): 1–29

    Article  MathSciNet  Google Scholar 

  95. Folch-Fortuny A, Arteaga F, Ferrer A. Missing data imputation tool-box for MATLAB. Chemometrics and Intelligent Laboratory Systems, 2016, 154: 93–100

    Article  Google Scholar 

  96. Templ M, Alfons A, Filzmoser P. Exploring incomplete data using visualization techniques. Advances in Data Analysis and Classification, 2012, 6(1): 29–47

    Article  MathSciNet  Google Scholar 

  97. Kuosmanen T, Post T. Measuring economic efficiency with incomplete price information: with an application to European commercial banks. European Journal of Operational Research, 2001, 134(1): 43–58

    Article  MATH  Google Scholar 

  98. Fernández-Vázquez E. Recovering matrices of economic flows from incomplete data and a composite prior. Entropy, 2010, 12(3): 516–527

    Article  Google Scholar 

  99. Wang Y, Chen C. Grey markov model forecast in economic system under incomplete information and its application on foreign direct investment. In: Proceedings of International Conference on Information Management, Innovation Management and Industrial Engineering. 2011, 117–120

    Google Scholar 

  100. Hassanzadeh H R, Phan J H, Wang M D. A semi-supervised method for predicting cancer survival using incomplete clinical data. In: Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2015, 210–213

    Google Scholar 

  101. Abreu P H, Amaro H, Silva D C, Machado P, Abreu M H, Afonso N, Dourado A. Overall survival prediction for women breast cancer using ensemble methods and incomplete clinical data. In: Proceedings of XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013. 2014, 1366–1369

    Chapter  Google Scholar 

  102. Zaffalon M, Wesnes K, Petrini O. Reliable diagnoses of dementia by the naive credal classifier inferred from incomplete cognitive data. Artificial Intelligence in Medicine, 2003, 29(1): 61–79

    Article  Google Scholar 

  103. Schneider T. Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values. Journal of Climate, 2001, 14(5): 853–871

    Article  Google Scholar 

  104. Plaia A, Bondì A L. Single imputation method of missing values in environmental pollution data sets. Atmospheric Environment, 2006, 40(38): 7316–7330

    Article  Google Scholar 

  105. Miyama E, Managi S. Global environmental emissions estimate: application of multiple imputation. Environmental Economics and Policy Studies, 2014, 16(2): 115–135

    Article  Google Scholar 

  106. Antova L, Koch C, Olteanu D. MayBMS: managing incomplete information with probabilistic world-set decompositions. In: Proceedings of the 23rd IEEE International Conference on Data Engineering. 2007, 1479–1480

    Google Scholar 

  107. Huang J, Antova L, Koch C, Olteanu D. MayBMS: a probabilistic database management system. In: Proceedings of ACM SIGMOD International Conference on Management of Data. 2009, 1071–1074

    Chapter  Google Scholar 

  108. Kambhampati S, Wolf G, Chen Y, Khatri H, Chokshi B, Fan J, Nambiar U. QUIC: handling query imprecision & data incompleteness in autonomous databases. In: Proceedings of Conference on Innovative Data Systems Research. 2007, 7–10

    Google Scholar 

  109. Widom J. Trio: a system for integrated management of data, accuracy, and lineage. Technical Report, 2004

    Google Scholar 

  110. Wolf G, Khatri H, Chokshi B, Fan J, Chen Y, Kambhampati S. Query processing over incomplete autonomous databases. In: Proceedings of the 33rd International Conference on Very Large Data Bases. 2007, 651–662

    Google Scholar 

  111. Wolf G, Kalavagattu A, Khatri H, Balakrishnan R, Chokshi B, Fan J, Chen Y, Kambhampati S. Query processing over incomplete autonomous databases: query rewriting using learned data dependencies. The VLDB Journal, 2009, 18(5): 1167–1190

    Article  Google Scholar 

  112. Raghunathan R, De S, Kambhampati S. Bayesian networks for supporting query processing over incomplete autonomous databases. Journal of Intelligent Information Systems, 2014, 42(3): 595–618

    Article  Google Scholar 

  113. Qarabaqi B, Riedewald M. User-driven refinement of imprecise queries. In: Proceedings of the 30th IEEE International Conference on Data Engineering. 2014, 916–927

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Basic Research Program of China (973 Program) (2015CB352502), the National Natural Science Foundation of China (NSFC) (Grant Nos. 61522208, 61379033, and 61472348), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjun Gao.

Additional information

Xiaoye Miao received the BS degree in computer science from Xi’an Jiaotong University, China in 2012. She is currently working toward the PhDdegree in the College of Computer Science, Zhejiang University, China. Her research interests include uncertain and incomplete databases.

Yunjun Gao received the PhD degree in computer science from Zhejiang University (ZJU), China in 2008. He is currently a professor in the College of Computer Science, ZJU. His research interests include spatiotemporal databases, metric and incomplete/ uncertain data management, database usability, and geo-social data processing. He is an awardee of the NSFC Excellent Young Scholars Program in 2015, a member of the ACM and the IEEE, and a senior member of the CCF.

Su Guo received the BS degree in computer science from Xidian University, China in 2016. She is currently working toward the MS degree in the College of Computer Science, Zhejiang University, China. Her research interests include incomplete databases and query processing.

Wanqi Liu is currently working toward the BS degree in the College of Computer Science, Zhejiang University, China. Her research interests include query processing and incomplete databases.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, X., Gao, Y., Guo, S. et al. Incomplete data management: a survey. Front. Comput. Sci. 12, 4–25 (2018). https://doi.org/10.1007/s11704-016-6195-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11704-016-6195-x

Keywords