Skip to main content
Log in

A survey on fast simulation of elastic objects

  • Review Article
  • Published:
Frontiers of Computer Science Aims and scope Submit manuscript

Abstract

Elastic simulation plays an important role in computer graphics and has been widely applied to film and game industries. It also has a tight relationship to virtual reality and computational fabrication applications. The balance between accuracy and performance are the most important challenge in the design of an elastic simulation algorithm. This survey will begin with the basic knowledge of elastic simulation, and then investigate two major acceleration techniques for it. From the viewpoint of deformation energy, we introduce typical linearization and reduction ideas for accelerating. We also introduce some recent progress in projective and position-based dynamics, which mainly rely on special numerical methods. Besides, optimal control for elastic objects and typical collision resolving techniques are discussed. Finally, we discuss several possible future works on integrating elastic simulation into virtual reality and 3D printing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brenner S, Scott R. The Mathematical Theory of Finite Element Methods. Springer Science & Business Media, 2007

    Google Scholar 

  2. Hauth M, Etzmuss O, Strasser W. Analysis of numerical methods for the simulation of deformable models. The Visual Computer, 2003, 19(7): 581–600

    Article  Google Scholar 

  3. Baraff D, Witkin A. Large steps in cloth simulation. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniqtdes. 1998, 43–54

    Google Scholar 

  4. Sifakis E, Barbic J. FEM simulation of 3D deformable solids: a practitioner’s guide to theory, discretization and model reduction. In: Proceedings of ACM SIGGRAPH 2012 Courses. 2012, 20

    Google Scholar 

  5. Müller M, Gross M. Interactive virtual materials. In: Proceedings of the Conference on Graphics Interface. 2004, 239–246

    Google Scholar 

  6. Terzopoulos D, Witkin A. Physically based models with rigid and deformable components. IEEE Computer Graphics and Applications, 1988, 8(6): 41–51

    Article  Google Scholar 

  7. Metaxas D, Terzopoulos D. Dynamic deformation of solid primitives with constraints. ACM SIGGRAPH Computer Graphics, 1992, 26(2): 309–312

    Article  Google Scholar 

  8. Hauser K K, Shen C, OBrien J F. Interactive deformation using modal analysis with constraints. In: Proceedings of the Conference on Graphics Interface. 2003, 16–17

    Google Scholar 

  9. Kaufman DM, Sueda S, James D L, Pai D K. Staggered projections for frictional contact in multibody systems. ACM Transactions on Graphics, 2008, 27(5): 164

    Article  Google Scholar 

  10. Kim T, James D L. Physics-based character skinning using multidomain subspace deformations. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(8): 1228–1240

    Article  Google Scholar 

  11. Capell S, Green S, Curless B, Duchamp T, Popović Z. Interactive skeleton-driven dynamic deformations. ACM Transactions on Graphics, 2002, 21(3): 586–593

    Article  Google Scholar 

  12. Huang J, Liu X, Bao H, Guo B, Shum H Y. An efficient large deformation method using domain decomposition. Computers & Graphics, 2006, 30(6): 927–935

    Article  Google Scholar 

  13. Barbič J, Zhao Y. Real-time large-deformation substructuring. ACM Transactions on Graphics, 2011, 30(4): 91

    Article  Google Scholar 

  14. Müller M, Dorsey J, McMillan L, Jagnow R, Cutler B. Stable real-time deformations. In: Proceedings of the 2002 ACM SIGGRAPH/ Eurographics Symposium on Computer Animation. 2002, 49–54

    Chapter  Google Scholar 

  15. Etzmuß O, Keckeisen M, Straßer W. A fast finite element solution for cloth modelling. In: Proceedings of the 11th Pacific Conference on Computer Graphics and Applications. 2003, 244–251

    Google Scholar 

  16. Chao I, Pinkall U, Sanan P, Schröder P. A simple geometric model for elastic deformations. ACM Transactions on Graphics, 2010, 29(4): 38

    Article  Google Scholar 

  17. McAdams A, Zhu Y, Selle A, Empey M, Tamstorf R, Teran J, Sifakis E. Efficient elasticity for character skinning with contact and collisions. ACM Transactions on Graphics, 2011, 30(4): 37

    Article  Google Scholar 

  18. Martin S, Kaufmann P, Botsch M, WickeM, Gross M. Polyhedral finite elements using harmonic basis functions. Computer Graphics Forum, 2008, 27(5): 1521–1529

    Article  Google Scholar 

  19. Fu Z F, He J. Modal Analysis. Oxford: Butterworth-Heinemann, 2001

    Google Scholar 

  20. Barbič J, James D. Time-critical distributed contact for 6-DoF haptic rendering of adaptively sampled reduced deformable models. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 2007, 171–180

    Google Scholar 

  21. Pentland A, Williams J. Good vibrations: modal dynamics for graphics and animation. ACMSIGGRAPH Computer Graphics, 1989, 23(3): 207–214

    Article  Google Scholar 

  22. Silva M, Maia N M. Modal Analysis and Testing. Springer-Verlag, 1989

    Google Scholar 

  23. Barbič J, James D L. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Transactions on Graphics, 2005, 24(3): 982–990

    Article  Google Scholar 

  24. Von Tycowicz C, Schulz C, Seidel H P, Hildebrandt K. An efficient construction of reduced deformable objects. ACM Transactions on Graphics, 2013, 32(6): 213

    Article  Google Scholar 

  25. Yang Y, Li D, Xu W, Tian Y, Zheng C. Expediting precomputation for reduced deformable simulation. ACM Transactions on Graphics, 2015, 34(6): 243

    Google Scholar 

  26. Langlois T R, An S S, Jin K K, James D L. Eigenmode compression for modal sound models. ACM Transactions on Graphics, 2014, 33(4): 40

    Google Scholar 

  27. Zheng C, James D L. Toward high-quality modal contact sound. ACM Transactions on Graphics, 2011, 30(4): 38

    Article  Google Scholar 

  28. Kry P G, James D L, Pai D K. Eigenskin: real time large deformation character skinning in hardware. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 2002, 153–159

    Chapter  Google Scholar 

  29. Kim T, James D L. Skipping steps in deformable simulation with online model reduction. ACM Transactions on Graphics, 2009, 28(5): 123

    Google Scholar 

  30. Martin S, Thomaszewski B, Grinspun E, Gross M. Example-based elastic materials. ACM Transactions on Graphics, 2011, 30(4):72

    Google Scholar 

  31. Zhang W, Zheng J, Thalmann N M. Real-time subspace integration for example-based elastic material. Computer Graphics Forum, 2015, 34(2): 395–404

    Article  Google Scholar 

  32. Xu H, Li Y, Chen Y, Barbič J. Interactive material design using model reduction. ACM Transactions on Graphics, 2015, 34(2): 18

    Article  Google Scholar 

  33. Chen X, Zheng C, Zhou K. Example-based subspace stress analysis for interactive shape design. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(10): 2314–2327

    Article  Google Scholar 

  34. Hahn F, Martin S, Thomaszewski B, Sumner R, Coros S, Gross M. Rig-space physics. ACM Transactions on Graphics, 2012, 31(4): 72

    Article  Google Scholar 

  35. Hahn F, Thomaszewski B, Coros S, Sumner R W, Gross M. Efficient simulation of secondary motion in rig-space. In: Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 2013, 165–171

    Chapter  Google Scholar 

  36. Bailey S W, Otte D, Dilorenzo P, O’Brien J F. Fast and deep deformation approximations. ACM Transactions on Graphics, 2018, 37(4): 119

    Article  Google Scholar 

  37. Gilles B, Bousquet G, Faure F, Pai D K. Frame-based elastic models. ACM Transactions on Graphics, 2011, 30(2): 15

    Article  Google Scholar 

  38. Joshi P, Meyer M, DeRose T, Green B, Sanocki T. Harmonic coordinates for character articulation. ACM Transactions on Graphics, 2007, 26(3): 71

    Article  Google Scholar 

  39. Teng Y, Meyer M, DeRose T, Kim T. Subspace condensation: full space adaptivity for subspace deformations. ACM Transactions on Graphics, 2015, 34(4): 76

    Article  MATH  Google Scholar 

  40. Yang Y, Xu W, Guo X, Zhou K, Guo B. Boundary-aware multidomain subspace deformation. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(10): 1633–1645

    Article  Google Scholar 

  41. Lu W, Jin N, Fedkiw R. Two-way coupling of fluids to reduced deformable bodies. In: Proceedings of the ACM SIGGRAPH/ Eurographics Symposium on Computer Animation. 2016, 67–76

    Google Scholar 

  42. Yang C, Li S, Lan Y, Wang L, Hao A, Qin H. Coupling time-varying modal analysis and FEM for real-time cutting simulation of objects with multi-material sub-domains. Computer Aided Geometric Design, 2016, 43: 53–67

    Article  MathSciNet  MATH  Google Scholar 

  43. Harmon D, Zorin D. Subspace integration with local deformations. ACM Transactions on Graphics, 2013, 32(4): 107

    Article  MATH  Google Scholar 

  44. Wang Y, Jacobson A, Barbič J, Kavan L. Linear subspace design for real-time shape deformation. ACM Transactions on Graphics, 2015, 34(4): 57

    Google Scholar 

  45. Yang C, Li S, Lan Y, Wang L, Hao A, Qin H. Coupling time-varying modal analysis and fem for real-time cutting simulation of objects with multi-material sub-domains. Computer Aided Geometric Design, 2016, 43:53–67

    Google Scholar 

  46. An S S, Kim T, James D L. Optimizing cubature for efficient integration of subspace deformations. ACM Transactions on Graphics, 2008, 27(5): 165

    Article  Google Scholar 

  47. Choi M G, Ko H S. Modal warping: real-time simulation of large rotational deformation and manipulation. IEEE Transactions on Visualization and Computer Graphics, 2005, 11(1): 91–101

    Article  Google Scholar 

  48. Huang J, Tong Y, Zhou K, Bao H, Desbrun M. Interactive shape interpolation through controllable dynamic deformation. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(7): 983–992

    Article  Google Scholar 

  49. Li S, Huang J, Goes de F, Jin X, Bao H, Desbrun M. Space-time editing of elastic motion through material optimization and reduction. ACM Transactions on Graphics, 2014, 33(4): 108

    Article  MATH  Google Scholar 

  50. Pan Z, Bao H, Huang J. Subspace dynamic simulation using rotationstrain coordinates. ACM Transactions on Graphics, 2015, 34(6): 242

    Article  Google Scholar 

  51. Müller M, Heidelberger B, Teschner M, Gross M. Meshless deformations based on shape matching. ACM Transactions on Graphics, 2005, 24(3): 471–478

    Article  Google Scholar 

  52. Müller M, Bruno H, Marcus H, John R. Position based dynamics. Journal of Visual Communication and Image Representation, 2007, 18(2): 109–118

    Article  Google Scholar 

  53. Rivers A R, James D L. Fastlsm: fast lattice shape matching for robust real-time deformation. ACM Transactions on Graphics, 2007, 26(3): 82

    Article  Google Scholar 

  54. Müller M, Chentanez N. Solid simulation with oriented particles. ACM Transactions on Graphics, 2011, 30(4): 92

    Article  Google Scholar 

  55. Bender J,Müller M, Otaduy MA, Teschner M. Position-based methods for the simulation of solid objects in computer graphics. In: Proceedings of Eurographics 2013-State of the Art Reports. 2013, 1–22

    Google Scholar 

  56. Fratarcangeli M, Tibaldo V, Pellacini F. Vivace: a practical gauss-seidel method for stable soft body dynamics. ACM Transactions on Graphics, 2016, 35(6): 214

    Article  Google Scholar 

  57. Deul C, Kugelstadt T, Weiler M, Bender J. Direct position-based solver for stiff rods. In: Proceedings of Computer Graphics Forum. 2018

    Google Scholar 

  58. Huang J, Shi X, Liu X, Zhou K, Guo B, Bao H. Geometrically based potential energy for simulating deformable objects. The Visual Computer, 2006, 22(9): 740–748

    Article  Google Scholar 

  59. Huang J, Zhang H, Shi X, Liu X, Bao H. Interactive mesh deformation with pseudo material effects. Computer Animation and Virtual Worlds, 2006, 17(3–4): 383–392

    Article  Google Scholar 

  60. Liu T, Bargteil A W, OBrien J F, Kavan L. Fast simulation of massspring systems. ACM Transactions on Graphics, 2013, 32(6): 214

    Google Scholar 

  61. Bouaziz S, Martin S, Liu T, Kavan L, Pauly M. Projective dynamics: fusing constraint projections for fast simulation. ACM Transactions on Graphics, 2014, 33(4): 154

    Article  MATH  Google Scholar 

  62. Brant C, Eisemann E, Hilbebrant K. Hyper-reduced projective dynamics. ACM Transactions on Graphics, 2018, 37(4): 154

    Google Scholar 

  63. Narain R, Overby M, Brown G E. Admm ⊇ projective dynamics: fast simulation of general constitutive models. In: Proceedings of the ACMSIGGRAPH/Eurographics Symposium on Computer Animation. 2016, 21–28

    Google Scholar 

  64. Wang H. A chebyshev semi-iterative approach for accelerating projective and position-based dynamics. ACM Transactions on Graphics, 2015, 34(6): 246

    Google Scholar 

  65. Liu T, Bouaziz S, Kavan L. Quasi-newton methods for real-time simulation of hyperelastic materials. ACM Transactions on Graphics, 2017, 36(3): 23

    Google Scholar 

  66. Wang H, Yang Y. Descent methods for elastic body simulation on the GPU. ACM Transactions on Graphics, 2016, 35(6): 212

    Google Scholar 

  67. Peng Y, Deng B, Zhang J, Geng F, Qin W, Liu L. Anderson acceleration for geometry optimization and physics simulation. 2018, arXiv preprint arXiv: 1805.05715

    Book  Google Scholar 

  68. Witkin A, Kass M. Spacetime constraints. ACM Siggraph Computer Graphics, 1988, 22(4): 159–168

    Article  Google Scholar 

  69. Barbič J, Silva da M, Popović J. Deformable object animation using reduced optimal control. ACM Transactions on Graphics, 2009, 28(3): 53

    Article  Google Scholar 

  70. Hildebrandt K, Schulz C, Tycowicz von C, Polthier K. Interactive spacetime control of deformable objects. ACM Transactions on Graphics, 2012, 31(4): 71

    Article  Google Scholar 

  71. Kass M, Anderson J. Animating oscillatory motion with overlap: wiggly splines. ACM Transactions on Graphics, 2008, 27(3): 28

    Article  Google Scholar 

  72. Barbič J, Sin F, Grinspun E. Interactive editing of deformable simulations. ACM Transactions on Graphics, 2012, 31(4): 70

    Article  Google Scholar 

  73. Li S, Huang J, Desbrun M, Jin X. Interactive elastic motion editing through space–time position constraints. Computer Animation and Virtual Worlds, 2013, 24(3–4): 409–417

    Article  Google Scholar 

  74. Barbič J, Popović J. Real-time control of physically based simulations using gentle forces. ACM Transactions on Graphics, 2008, 27(5): 163

    Article  Google Scholar 

  75. Schulz C, Tycowicz von C, Seidel H P, Hildebrandt K. Animating deformable objects using sparse spacetime constraints. ACM Transactions on Graphics, 2014, 33(4): 109

    Google Scholar 

  76. Teschner M, Kimmerle S, Heidelberger B, Zachmann G, Raghupathi L, Fuhrmann A, Cani M P, Faure F, Magnenat-Thalmann N, Strasser W, Volino P. Collision detection for deformable objects. Computer Graphics Forum, 2005, 24(1): 61–81

    Article  Google Scholar 

  77. Redon S, Kheddar A, Coquillart S. Fast continuous collision detection between rigid bodies. Computer Graphics Forum, 2002, 21(3): 279–287

    Article  Google Scholar 

  78. Zhang X, Redon S, Lee M, Kim Y J. Continuous collision detection for articulated models using taylor models and temporal culling. ACM Transactions on Graphics, 2007, 26(3): 15

    Article  Google Scholar 

  79. Provot X. Collision and Self-collision Handling in Cloth Model Dedicated to Design Garments. Computer Animation and Simulation, Springer, Vienna, 1997, 177–189

    Google Scholar 

  80. Bridson R, Fedkiw R, Anderson J. Robust treatment of collisions, contact and friction for cloth animation. ACM Transactions on Graphics (ToG), 2002, 21(3): 594–603

    Article  Google Scholar 

  81. Harmon D, Vouga E, Tamstorf R, Grinspun E. Robust treatment of simultaneous collisions. ACM Transactions on Graphics, 2008, 27(3): 23

    Article  Google Scholar 

  82. Brochu T, Edwards E, Bridson R. Efficient geometrically exact continuous collision detection. ACM Transactions on Graphics, 2012, 31(4): 96

    Article  Google Scholar 

  83. Tang M, Manocha D, Yoon S E, Du P, Heo J P, Tong R F. Volccd: fast continuous collision culling between deforming volume meshes. ACM Transactions on Graphics, 2011, 30(5): 111

    Article  Google Scholar 

  84. Tang M, Tong R, Wang Z, Manocha D. Fast and exact continuous collision detection with bernstein sign classification. ACM Transactions on Graphics, 2014, 33(6): 186

    Article  MATH  Google Scholar 

  85. Wang H. Defending continuous collision detection against errors. ACM Transactions on Graphics, 2014, 33(4): 122

    MATH  Google Scholar 

  86. Wang Z, Tang M, Tong R, Manocha D. Tightccd: efficient and robust continuous collision detection using tight error bounds. Computer Graphics Forum, 2015, 34(7): 289–298

    Article  Google Scholar 

  87. Choi K J, Ko H S. Stable but responsive cloth. In: Proceedings of ACM SIGGRAPH 2005 Courses. 2005

    Book  Google Scholar 

  88. Fisher S, Lin M C. Deformed Distance Fields for Simulation of Non-penetrating Flexible Bodies. Computer Animation and Simulation 2001, Springer, Vienna, 2001, 99–111

    Google Scholar 

  89. Keiser M, Heidelberger B, Gross M. Consistent Penetration Depth Estimation for Deformable Collision Response. Vision, Modeling, and Visualization, IOS Press, 2004, 339–346

    Google Scholar 

  90. Harmon D, Vouga E, Smith B, Tamstorf R, Grinspun E. Asynchronous contact mechanics. ACM Transactions on Graphics, 2009, 28(3): 87

    Article  MATH  Google Scholar 

  91. Tang M, Manocha D, Otaduy MA, Tong R. Continuous penalty forces. ACM Transactions on Graphics, 2012, 31(4): 107

    Article  Google Scholar 

  92. Otaduy M A, Tamstorf R, Steinemann D, Gross M. Implicit contact handling for deformable objects. Computer Graphics Forum, 2009, 28(2): 559–568

    Article  Google Scholar 

  93. Li S, Pan Z, Huang J, Bao H, Jin X. Deformable objects collision handling with fast convergence. Computer Graphics Forum, 2015, 34(7): 269–278

    Article  Google Scholar 

  94. Barbič J, James D L. Subspace self-collision culling. ACM Transactions on Graphics, 2010, 29(4): 81

    Article  Google Scholar 

  95. Schvartzman S C, Gascón J, Otaduy M A. Bounded normal trees for reduced deformations of triangulated surfaces. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 2009, 75–82

    Chapter  Google Scholar 

  96. Teng Y, Otaduy M A, Kim T. Simulating articulated subspace selfcontact. ACM Transactions on Graphics, 2014, 33(4): 106

    Article  Google Scholar 

  97. Harmon D, Zorin D. Subspace integration with local deformations. ACM Transactions on Graphics, 2013, 32(4): 107

    Article  MATH  Google Scholar 

  98. Barbič J, James D L. Six-DoF haptic rendering of contact between geometrically complex reduced deformable models. IEEE Transactions on Haptics, 2008, 1(1): 39–52

    Article  Google Scholar 

  99. Lipeng Y, Shuai L, Aimin H, Hong Q. Realtime two-way coupling of meshless fluids and nonlinear fem. Computer Graphics Forum, 2012, 31(7): 2037–2046

    Article  Google Scholar 

  100. Chen X, Zheng C, Xu W, Zhou K. An asymptotic numerical method for inverse elastic shape design. ACM Transactions on Graphics, 2014, 33(4): 95

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (2017YFB1002703), the National Natural Science Foundation of China (Grant Nos. 61522209, 61732016, 61210007), and the Fundamental Research Funds for the Central Universities (2017XZZX009-03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiwei Xu or Hujun Bao.

Additional information

Jin Huang is a professor in State Key Lab of CAD&CG, College of Computer Science at Zhejiang University, China, Awardee of the NSFC Excellent Young Scholars Program in 2015, Associate Editor of Computer Aided Geometric Design (2016- Now).

Jiong Chen is a PhD student supervised by Jin HUANG in State Key Lab of CAD&CG, College of Computer Science at Zhejiang University, China.

Weiwei Xu is a researcher in State Key Lab of CAD&CG, College of Computer Science at Zhejiang University, China, Awardee of the NSFC Excellent Young Scholars Program in 2013. His main research interests are digital geometry processing, physical simulation, and virtual reality.

Hujun Bao is a professor in State Key Lab of CAD&CG, College of Computer Science at Zhejiang University, China. His main research interest is computer graphics and computer vision, including real-time rendering technique, geometry computing, virtual reality, and 3D reconstruction.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Chen, J., Xu, W. et al. A survey on fast simulation of elastic objects. Front. Comput. Sci. 13, 443–459 (2019). https://doi.org/10.1007/s11704-018-8081-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11704-018-8081-1

Keywords