Abstract
Elastic simulation plays an important role in computer graphics and has been widely applied to film and game industries. It also has a tight relationship to virtual reality and computational fabrication applications. The balance between accuracy and performance are the most important challenge in the design of an elastic simulation algorithm. This survey will begin with the basic knowledge of elastic simulation, and then investigate two major acceleration techniques for it. From the viewpoint of deformation energy, we introduce typical linearization and reduction ideas for accelerating. We also introduce some recent progress in projective and position-based dynamics, which mainly rely on special numerical methods. Besides, optimal control for elastic objects and typical collision resolving techniques are discussed. Finally, we discuss several possible future works on integrating elastic simulation into virtual reality and 3D printing applications.
Similar content being viewed by others
References
Brenner S, Scott R. The Mathematical Theory of Finite Element Methods. Springer Science & Business Media, 2007
Hauth M, Etzmuss O, Strasser W. Analysis of numerical methods for the simulation of deformable models. The Visual Computer, 2003, 19(7): 581–600
Baraff D, Witkin A. Large steps in cloth simulation. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniqtdes. 1998, 43–54
Sifakis E, Barbic J. FEM simulation of 3D deformable solids: a practitioner’s guide to theory, discretization and model reduction. In: Proceedings of ACM SIGGRAPH 2012 Courses. 2012, 20
Müller M, Gross M. Interactive virtual materials. In: Proceedings of the Conference on Graphics Interface. 2004, 239–246
Terzopoulos D, Witkin A. Physically based models with rigid and deformable components. IEEE Computer Graphics and Applications, 1988, 8(6): 41–51
Metaxas D, Terzopoulos D. Dynamic deformation of solid primitives with constraints. ACM SIGGRAPH Computer Graphics, 1992, 26(2): 309–312
Hauser K K, Shen C, OBrien J F. Interactive deformation using modal analysis with constraints. In: Proceedings of the Conference on Graphics Interface. 2003, 16–17
Kaufman DM, Sueda S, James D L, Pai D K. Staggered projections for frictional contact in multibody systems. ACM Transactions on Graphics, 2008, 27(5): 164
Kim T, James D L. Physics-based character skinning using multidomain subspace deformations. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(8): 1228–1240
Capell S, Green S, Curless B, Duchamp T, Popović Z. Interactive skeleton-driven dynamic deformations. ACM Transactions on Graphics, 2002, 21(3): 586–593
Huang J, Liu X, Bao H, Guo B, Shum H Y. An efficient large deformation method using domain decomposition. Computers & Graphics, 2006, 30(6): 927–935
Barbič J, Zhao Y. Real-time large-deformation substructuring. ACM Transactions on Graphics, 2011, 30(4): 91
Müller M, Dorsey J, McMillan L, Jagnow R, Cutler B. Stable real-time deformations. In: Proceedings of the 2002 ACM SIGGRAPH/ Eurographics Symposium on Computer Animation. 2002, 49–54
Etzmuß O, Keckeisen M, Straßer W. A fast finite element solution for cloth modelling. In: Proceedings of the 11th Pacific Conference on Computer Graphics and Applications. 2003, 244–251
Chao I, Pinkall U, Sanan P, Schröder P. A simple geometric model for elastic deformations. ACM Transactions on Graphics, 2010, 29(4): 38
McAdams A, Zhu Y, Selle A, Empey M, Tamstorf R, Teran J, Sifakis E. Efficient elasticity for character skinning with contact and collisions. ACM Transactions on Graphics, 2011, 30(4): 37
Martin S, Kaufmann P, Botsch M, WickeM, Gross M. Polyhedral finite elements using harmonic basis functions. Computer Graphics Forum, 2008, 27(5): 1521–1529
Fu Z F, He J. Modal Analysis. Oxford: Butterworth-Heinemann, 2001
Barbič J, James D. Time-critical distributed contact for 6-DoF haptic rendering of adaptively sampled reduced deformable models. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 2007, 171–180
Pentland A, Williams J. Good vibrations: modal dynamics for graphics and animation. ACMSIGGRAPH Computer Graphics, 1989, 23(3): 207–214
Silva M, Maia N M. Modal Analysis and Testing. Springer-Verlag, 1989
Barbič J, James D L. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Transactions on Graphics, 2005, 24(3): 982–990
Von Tycowicz C, Schulz C, Seidel H P, Hildebrandt K. An efficient construction of reduced deformable objects. ACM Transactions on Graphics, 2013, 32(6): 213
Yang Y, Li D, Xu W, Tian Y, Zheng C. Expediting precomputation for reduced deformable simulation. ACM Transactions on Graphics, 2015, 34(6): 243
Langlois T R, An S S, Jin K K, James D L. Eigenmode compression for modal sound models. ACM Transactions on Graphics, 2014, 33(4): 40
Zheng C, James D L. Toward high-quality modal contact sound. ACM Transactions on Graphics, 2011, 30(4): 38
Kry P G, James D L, Pai D K. Eigenskin: real time large deformation character skinning in hardware. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 2002, 153–159
Kim T, James D L. Skipping steps in deformable simulation with online model reduction. ACM Transactions on Graphics, 2009, 28(5): 123
Martin S, Thomaszewski B, Grinspun E, Gross M. Example-based elastic materials. ACM Transactions on Graphics, 2011, 30(4):72
Zhang W, Zheng J, Thalmann N M. Real-time subspace integration for example-based elastic material. Computer Graphics Forum, 2015, 34(2): 395–404
Xu H, Li Y, Chen Y, Barbič J. Interactive material design using model reduction. ACM Transactions on Graphics, 2015, 34(2): 18
Chen X, Zheng C, Zhou K. Example-based subspace stress analysis for interactive shape design. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(10): 2314–2327
Hahn F, Martin S, Thomaszewski B, Sumner R, Coros S, Gross M. Rig-space physics. ACM Transactions on Graphics, 2012, 31(4): 72
Hahn F, Thomaszewski B, Coros S, Sumner R W, Gross M. Efficient simulation of secondary motion in rig-space. In: Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 2013, 165–171
Bailey S W, Otte D, Dilorenzo P, O’Brien J F. Fast and deep deformation approximations. ACM Transactions on Graphics, 2018, 37(4): 119
Gilles B, Bousquet G, Faure F, Pai D K. Frame-based elastic models. ACM Transactions on Graphics, 2011, 30(2): 15
Joshi P, Meyer M, DeRose T, Green B, Sanocki T. Harmonic coordinates for character articulation. ACM Transactions on Graphics, 2007, 26(3): 71
Teng Y, Meyer M, DeRose T, Kim T. Subspace condensation: full space adaptivity for subspace deformations. ACM Transactions on Graphics, 2015, 34(4): 76
Yang Y, Xu W, Guo X, Zhou K, Guo B. Boundary-aware multidomain subspace deformation. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(10): 1633–1645
Lu W, Jin N, Fedkiw R. Two-way coupling of fluids to reduced deformable bodies. In: Proceedings of the ACM SIGGRAPH/ Eurographics Symposium on Computer Animation. 2016, 67–76
Yang C, Li S, Lan Y, Wang L, Hao A, Qin H. Coupling time-varying modal analysis and FEM for real-time cutting simulation of objects with multi-material sub-domains. Computer Aided Geometric Design, 2016, 43: 53–67
Harmon D, Zorin D. Subspace integration with local deformations. ACM Transactions on Graphics, 2013, 32(4): 107
Wang Y, Jacobson A, Barbič J, Kavan L. Linear subspace design for real-time shape deformation. ACM Transactions on Graphics, 2015, 34(4): 57
Yang C, Li S, Lan Y, Wang L, Hao A, Qin H. Coupling time-varying modal analysis and fem for real-time cutting simulation of objects with multi-material sub-domains. Computer Aided Geometric Design, 2016, 43:53–67
An S S, Kim T, James D L. Optimizing cubature for efficient integration of subspace deformations. ACM Transactions on Graphics, 2008, 27(5): 165
Choi M G, Ko H S. Modal warping: real-time simulation of large rotational deformation and manipulation. IEEE Transactions on Visualization and Computer Graphics, 2005, 11(1): 91–101
Huang J, Tong Y, Zhou K, Bao H, Desbrun M. Interactive shape interpolation through controllable dynamic deformation. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(7): 983–992
Li S, Huang J, Goes de F, Jin X, Bao H, Desbrun M. Space-time editing of elastic motion through material optimization and reduction. ACM Transactions on Graphics, 2014, 33(4): 108
Pan Z, Bao H, Huang J. Subspace dynamic simulation using rotationstrain coordinates. ACM Transactions on Graphics, 2015, 34(6): 242
Müller M, Heidelberger B, Teschner M, Gross M. Meshless deformations based on shape matching. ACM Transactions on Graphics, 2005, 24(3): 471–478
Müller M, Bruno H, Marcus H, John R. Position based dynamics. Journal of Visual Communication and Image Representation, 2007, 18(2): 109–118
Rivers A R, James D L. Fastlsm: fast lattice shape matching for robust real-time deformation. ACM Transactions on Graphics, 2007, 26(3): 82
Müller M, Chentanez N. Solid simulation with oriented particles. ACM Transactions on Graphics, 2011, 30(4): 92
Bender J,Müller M, Otaduy MA, Teschner M. Position-based methods for the simulation of solid objects in computer graphics. In: Proceedings of Eurographics 2013-State of the Art Reports. 2013, 1–22
Fratarcangeli M, Tibaldo V, Pellacini F. Vivace: a practical gauss-seidel method for stable soft body dynamics. ACM Transactions on Graphics, 2016, 35(6): 214
Deul C, Kugelstadt T, Weiler M, Bender J. Direct position-based solver for stiff rods. In: Proceedings of Computer Graphics Forum. 2018
Huang J, Shi X, Liu X, Zhou K, Guo B, Bao H. Geometrically based potential energy for simulating deformable objects. The Visual Computer, 2006, 22(9): 740–748
Huang J, Zhang H, Shi X, Liu X, Bao H. Interactive mesh deformation with pseudo material effects. Computer Animation and Virtual Worlds, 2006, 17(3–4): 383–392
Liu T, Bargteil A W, OBrien J F, Kavan L. Fast simulation of massspring systems. ACM Transactions on Graphics, 2013, 32(6): 214
Bouaziz S, Martin S, Liu T, Kavan L, Pauly M. Projective dynamics: fusing constraint projections for fast simulation. ACM Transactions on Graphics, 2014, 33(4): 154
Brant C, Eisemann E, Hilbebrant K. Hyper-reduced projective dynamics. ACM Transactions on Graphics, 2018, 37(4): 154
Narain R, Overby M, Brown G E. Admm ⊇ projective dynamics: fast simulation of general constitutive models. In: Proceedings of the ACMSIGGRAPH/Eurographics Symposium on Computer Animation. 2016, 21–28
Wang H. A chebyshev semi-iterative approach for accelerating projective and position-based dynamics. ACM Transactions on Graphics, 2015, 34(6): 246
Liu T, Bouaziz S, Kavan L. Quasi-newton methods for real-time simulation of hyperelastic materials. ACM Transactions on Graphics, 2017, 36(3): 23
Wang H, Yang Y. Descent methods for elastic body simulation on the GPU. ACM Transactions on Graphics, 2016, 35(6): 212
Peng Y, Deng B, Zhang J, Geng F, Qin W, Liu L. Anderson acceleration for geometry optimization and physics simulation. 2018, arXiv preprint arXiv: 1805.05715
Witkin A, Kass M. Spacetime constraints. ACM Siggraph Computer Graphics, 1988, 22(4): 159–168
Barbič J, Silva da M, Popović J. Deformable object animation using reduced optimal control. ACM Transactions on Graphics, 2009, 28(3): 53
Hildebrandt K, Schulz C, Tycowicz von C, Polthier K. Interactive spacetime control of deformable objects. ACM Transactions on Graphics, 2012, 31(4): 71
Kass M, Anderson J. Animating oscillatory motion with overlap: wiggly splines. ACM Transactions on Graphics, 2008, 27(3): 28
Barbič J, Sin F, Grinspun E. Interactive editing of deformable simulations. ACM Transactions on Graphics, 2012, 31(4): 70
Li S, Huang J, Desbrun M, Jin X. Interactive elastic motion editing through space–time position constraints. Computer Animation and Virtual Worlds, 2013, 24(3–4): 409–417
Barbič J, Popović J. Real-time control of physically based simulations using gentle forces. ACM Transactions on Graphics, 2008, 27(5): 163
Schulz C, Tycowicz von C, Seidel H P, Hildebrandt K. Animating deformable objects using sparse spacetime constraints. ACM Transactions on Graphics, 2014, 33(4): 109
Teschner M, Kimmerle S, Heidelberger B, Zachmann G, Raghupathi L, Fuhrmann A, Cani M P, Faure F, Magnenat-Thalmann N, Strasser W, Volino P. Collision detection for deformable objects. Computer Graphics Forum, 2005, 24(1): 61–81
Redon S, Kheddar A, Coquillart S. Fast continuous collision detection between rigid bodies. Computer Graphics Forum, 2002, 21(3): 279–287
Zhang X, Redon S, Lee M, Kim Y J. Continuous collision detection for articulated models using taylor models and temporal culling. ACM Transactions on Graphics, 2007, 26(3): 15
Provot X. Collision and Self-collision Handling in Cloth Model Dedicated to Design Garments. Computer Animation and Simulation, Springer, Vienna, 1997, 177–189
Bridson R, Fedkiw R, Anderson J. Robust treatment of collisions, contact and friction for cloth animation. ACM Transactions on Graphics (ToG), 2002, 21(3): 594–603
Harmon D, Vouga E, Tamstorf R, Grinspun E. Robust treatment of simultaneous collisions. ACM Transactions on Graphics, 2008, 27(3): 23
Brochu T, Edwards E, Bridson R. Efficient geometrically exact continuous collision detection. ACM Transactions on Graphics, 2012, 31(4): 96
Tang M, Manocha D, Yoon S E, Du P, Heo J P, Tong R F. Volccd: fast continuous collision culling between deforming volume meshes. ACM Transactions on Graphics, 2011, 30(5): 111
Tang M, Tong R, Wang Z, Manocha D. Fast and exact continuous collision detection with bernstein sign classification. ACM Transactions on Graphics, 2014, 33(6): 186
Wang H. Defending continuous collision detection against errors. ACM Transactions on Graphics, 2014, 33(4): 122
Wang Z, Tang M, Tong R, Manocha D. Tightccd: efficient and robust continuous collision detection using tight error bounds. Computer Graphics Forum, 2015, 34(7): 289–298
Choi K J, Ko H S. Stable but responsive cloth. In: Proceedings of ACM SIGGRAPH 2005 Courses. 2005
Fisher S, Lin M C. Deformed Distance Fields for Simulation of Non-penetrating Flexible Bodies. Computer Animation and Simulation 2001, Springer, Vienna, 2001, 99–111
Keiser M, Heidelberger B, Gross M. Consistent Penetration Depth Estimation for Deformable Collision Response. Vision, Modeling, and Visualization, IOS Press, 2004, 339–346
Harmon D, Vouga E, Smith B, Tamstorf R, Grinspun E. Asynchronous contact mechanics. ACM Transactions on Graphics, 2009, 28(3): 87
Tang M, Manocha D, Otaduy MA, Tong R. Continuous penalty forces. ACM Transactions on Graphics, 2012, 31(4): 107
Otaduy M A, Tamstorf R, Steinemann D, Gross M. Implicit contact handling for deformable objects. Computer Graphics Forum, 2009, 28(2): 559–568
Li S, Pan Z, Huang J, Bao H, Jin X. Deformable objects collision handling with fast convergence. Computer Graphics Forum, 2015, 34(7): 269–278
Barbič J, James D L. Subspace self-collision culling. ACM Transactions on Graphics, 2010, 29(4): 81
Schvartzman S C, Gascón J, Otaduy M A. Bounded normal trees for reduced deformations of triangulated surfaces. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 2009, 75–82
Teng Y, Otaduy M A, Kim T. Simulating articulated subspace selfcontact. ACM Transactions on Graphics, 2014, 33(4): 106
Harmon D, Zorin D. Subspace integration with local deformations. ACM Transactions on Graphics, 2013, 32(4): 107
Barbič J, James D L. Six-DoF haptic rendering of contact between geometrically complex reduced deformable models. IEEE Transactions on Haptics, 2008, 1(1): 39–52
Lipeng Y, Shuai L, Aimin H, Hong Q. Realtime two-way coupling of meshless fluids and nonlinear fem. Computer Graphics Forum, 2012, 31(7): 2037–2046
Chen X, Zheng C, Xu W, Zhou K. An asymptotic numerical method for inverse elastic shape design. ACM Transactions on Graphics, 2014, 33(4): 95
Acknowledgements
This work was supported by National Key R&D Program of China (2017YFB1002703), the National Natural Science Foundation of China (Grant Nos. 61522209, 61732016, 61210007), and the Fundamental Research Funds for the Central Universities (2017XZZX009-03).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Jin Huang is a professor in State Key Lab of CAD&CG, College of Computer Science at Zhejiang University, China, Awardee of the NSFC Excellent Young Scholars Program in 2015, Associate Editor of Computer Aided Geometric Design (2016- Now).
Jiong Chen is a PhD student supervised by Jin HUANG in State Key Lab of CAD&CG, College of Computer Science at Zhejiang University, China.
Weiwei Xu is a researcher in State Key Lab of CAD&CG, College of Computer Science at Zhejiang University, China, Awardee of the NSFC Excellent Young Scholars Program in 2013. His main research interests are digital geometry processing, physical simulation, and virtual reality.
Hujun Bao is a professor in State Key Lab of CAD&CG, College of Computer Science at Zhejiang University, China. His main research interest is computer graphics and computer vision, including real-time rendering technique, geometry computing, virtual reality, and 3D reconstruction.
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Huang, J., Chen, J., Xu, W. et al. A survey on fast simulation of elastic objects. Front. Comput. Sci. 13, 443–459 (2019). https://doi.org/10.1007/s11704-018-8081-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11704-018-8081-1