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Abstract

Multi-task learning is to improve the performance of the model by transferring

and exploiting common knowledge among tasks. Existing MTL works mainly

focus on the scenario where label sets among multiple tasks (MTs) are usually

the same, thus they can be utilized for learning across the tasks. While almost

rare works explore the scenario where each task only has a small amount of

training samples, and their label sets are just partially overlapped or even not.

Learning such MTs is more challenging because of less correlation information

available among these tasks. For this, we propose a framework to learn these

tasks by jointly leveraging both abundant information from a learnt auxiliary

big task with sufficiently many classes to cover those of all these tasks and the

information shared among those partially-overlapped tasks. In our implemen-

tation of using the same neural network architecture of the learnt auxiliary task

to learn individual tasks, the key idea is to utilize available label information

to adaptively prune the hidden layer neurons of the auxiliary network to con-

struct corresponding network for each task, while accompanying a joint learning

across individual tasks. Our experimental results demonstrate its effectiveness

in comparison with the state-of-the-art approaches.
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1. Introduction

Multi-task learning (MTL) is an approach of exploiting and transferring

the relevant information among tasks to assist individual tasks obtain better

generalization. Over the last few years, it has been proved to be effective in

multiple different machine learning fields, such as object detection [1], image

segmentation [2], image classification[3], natural language processing [4], speech

recognition [5], drug discovery [6] and so on.

Currently, most existing MTL methods usually assume that learning tasks

have the same label sets and use the same model [7],[8],[9]. Because these label

sets contain abundant common knowledge and are transfered to each task to

improve the learning performance of the MTL model [10]. However, there are

more general situations in the real world, with only a small number of training

samples in each task, and when their label sets overlap partially or even unover-

lap, there would be less shared information between tasks, so learning such tasks

will be more challenging. To meet the challenges, [11] uses a modulation and

gating network to automatically adjust the shared characteristics among dif-

ferent tasks for the recommendation system. [12] learns various heterogeneous

tasks by sharing similar convolutional kernels among multi-task networks. These

methods aim to mine and use as much common knowledge hidden in the current

tasks as possible, but for the above-mentioned general scenarios, these methods

still leave an improved room in performance.

To achieve the above improvement, we re-focus on the two major issues

affecting MTL. Firstly, how to extract suitable knowledge from different tasks

for current multiple tasks. Since abundant knowledge exists in the nature of

multiple tasks that directly affects the joint learning among tasks and use-

ful knowledge for the current tasks can improve the performance of the whole

MT model, a key is how to extract this knowledge to avoid notorious nega-

tive transfer [13]. For this reason, many methods have been proposed and can

be divided into two types: non-deep methods and deep methods: 1) the non-
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deep methods build on shallow models to learn the parameters involved, e.g., [14]

extracts useful knowledge between tasks by regularizing a task-coupled kernel

function (such as a support vector machine) for the user’s prediction of product

selection. [15] obtains useful knowledge between tasks by learning the same

covariance matrix to predict students’ test scores. 2) The deep methods learn

a shared representation from the individual task networks to improve the per-

formance of the current tasks. E.g., [16] designs a feature matching network

(i.e., knowledge transfer) to capture shared features in different tasks. [17] uses

a segmented attention head module to capture useful knowledge between tasks

for depth estimation. [18] uses a two-level graph neural network to learn useful

knowledge of different tasks to improve the performance of the MTL model.

Secondly, how to design an effective MTL sharing mechanism. An effective

sharing mechanism can increase the predictive performance of the MTL model

by using useful knowledge between related tasks [19]. Inspired by this moti-

vation, many classic MTs sharing mechanisms have been designed. According

to whether the task’s feature/label spaces are consistent among tasks we can

divide these mechanisms into two types: homogeneous task sharing and het-

erogeneous task sharing, as shown in Table 1. The homogeneous task sharing

mechanisms can further be subdivided into 1) hard sharing based: the imple-

mentation of this type of methods assumes that all tasks share knowledge in

the same hidden space. For example, [20] connects the aggregated features of

specific layers between tasks for semantic segmentation and depth prediction

of images. 2) Soft sharing based: the implementation of this type of methods

assumes that all task models and parameters are independent, and the distance

between model parameters is regularized to obtain similar parameters for joint

learning. E.g., [21] uses the attention mechanism to share parameters in spe-

cific layers between different tasks to identify symptoms of depression. 3) Mixed

sharing based: the implementation of this type of methods uses a special task

strategy to select the layer of the multi-task network model can perform shared

learning. Typically, [22] uses a specific task strategy to mix these common

features with the current tasks for image semantic and normal segmentation.
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The heterogeneous task sharing mechanism can likewise be further subdivided

into 1) Sparse sharing based: the implementation of this type of methods is to

form a sub-network appropriate for individual tasks from an overparameterized

base network, and to extract the common knowledge from the overlapped parts

of the sub-networks through the sparse strategy. For example, [23] extracts

shared parameters as common knowledge to learn individual tasks by a mask

in the overlapping part of the sub-networks. 2) Gradient sharing based: the

implementation of this type of methods uses some similarities to measure the

gradient difference between tasks and calculate the nonnegative weights in these

tasks, thereby constructing a shared gradient. For example, [24] constructs a

shared gradient to measure the gradient difference among individual tasks by

cosine distance to predict hospital mortality. 3) Hierarchical sharing based: the

implementation of this type of methods performs hierarchical sharing for differ-

ent overlapping areas between multiple tasks. For example, [25] learns common

knowledge from different levels of multiple task networks for natural language

processing.

Unfortunately, most of the above works are designed for the scenario where

the label sets are the same among tasks, rather than for the scenario where

the label sets are partially overlapped or even unoverlapped. A few current

works design various learning mechanisms for the latter scenario. However,

such methods only capture useful knowledge among tasks, which is still diffi-

cult to effectively solve the scenario. For this, we propose a novel multi-task

learning framework with the help of a big auxiliary deep network (DAMTL),

whose intention is to use the auxiliary task(s) with abundant knowledge to as-

sist learning given multiple tasks with partial, even unoverlapping label sets.

Our framework is shown in Fig.1. Based on it, we first pre-train a big over-

parameterized auxiliary network which contains the class label information in

all individual tasks; Next, we use a set of soft masks to selectively prune the

neurons in the convolutional layers of this network to yield the corresponding

network for each learning task. Finally, we jointly train all individual networks

in an end-to-end manner.

4



FC

Auxiliary big task Task1 Task 2

3 x 3 512conv. Relu

3 x 3 256conv. Relu

3 x 3 512conv. Relu

FC

softmax

3 x 3 128conv. Relu

3 x 3 64conv. Relu

softmax

FC

FC

3 x 3 512conv. Relu

3 x 3 512conv. Relu

3 x 3 256conv. Relu

3 x 3 128conv. Relu

3 x 3 64conv. Relu

softmax

FC

FC

3 x 3 512conv. Relu

3 x 3 512conv. Relu

3 x 3 256conv. Relu

3 x 3 128conv. Relu

3 x 3 64conv. Relu

Figure 1: Our proposed DAMTL networks. The network consists of three identical indepen-

dent task networks. The left side is the auxiliary big task, and the rest are individual tasks;

99K and 99K indicate the direction in which the knowledge of the auxiliary task is transferred

to different tasks, and the yellow dotted box denotes the alignment layers.

In summary, our contribution can be summarized as below:

1) We present DAMTL framework and provide a new way to solve the prob-

lem of partial overlap or even unoverlap of label sets in MTL.

2) We design a novel knowledge extracting strategy that uses a set of soft

masks to prune neurons in the convolutional layers of the auxiliary task network

to extract knowledge for each task learning.

3) We propose a new alignment strategy that alleviates the possible class

drift in the knowledge transfer from the auxiliary task to individual tasks in the

DMATL network.

4) We conduct experiments on twelve public datasets and compare with the
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Table 1: comparison of various MTL sharing mechanisms.

Sharing mechanism Homogeneous Heterogeneous Supervised Algorithms

Hard sharing X × X [26, 27]

Soft sharing X × X [27, 28]

Mixed sharing X × X [29, 30]

Sparse sharing X X X [31, 23]

Gradient sharing × X X [24, 32]

Hierarchical sharing × X X [33, 34]

Homogeneous task, Heterogeneous task, Supervised learning, Representative algorithms

state-of-the-art methods to prove the effectiveness of our method.

The rest of this paper is arranged as follows. In Section 2, we briefly review

related work in multi-task learning. In Section 3, we introduce the architecture

of DAMTL, give the definition and some related theoretical application analysis.

In the experimental stage of Section 4, we present image classification results on

benchmark data sets. Finally, we conclude in Section 5. The code is available

at http://parnec.nuaa.edu.cn/3021/list.htm.

2. Related Work

MTL has good performance in many applications, especially in the field

of computer vision, so it has attracted a lot of attention in recent years. In

this section, we briefly review the related works of MTL based on shared task

features and MTL based on shared model parameters. Our work follows the

latter research line.

2.1. MTL based on shared task features

The methods of this class usually assume that a common feature represen-

tation can be learned from individual tasks. According to the implementation

manners, they likewise can roughly be divided into three sub-types:
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1) Selective sharing of task features: for the tasks in the same subspace, they

realize sharing by specifically regularizing the features among tasks. Typically,

[35] uses the `2 norm to regularize the task weight matrices to extract shared

features for the test score prediction of most school students. [36] uses the `1,2

norm to regularize the weight matrices to extract shared features between tasks

for learning multi-tasks with different feature dimensions. [37] uses `2,1 norm to

regularize the weight matrices of various modal tasks to jointly select common

features for multi-modal classification of Alzheimer’s disease.

2) Priori knowledge sharing of tasks: for the tasks defined in the same

subspace, they use the same prior knowledge among tasks to realize sharing.

Typically, [38] embeds prior knowledge (i.e., pathological images with different

magnification belong to the same subclass) into the feature extraction process

among different tasks to verify the relationship between tasks and pathologi-

cal image categories for fine-grained classification and pathophysiological image

classification. [39] uses a kind of meta data (i.e., contextual attributes) as a

priori knowledge to capture the relationship between different tasks for multi-

ple tasks clustering. [40] uses the same subclass of the gland area as the prior

information in the convolutional neural network to guide the network inference

for pathological colon image analysis.

3) Transformation sharing of task features: for the tasks represented in the

same subspace, they realize sharing by performing the nonlinear transformations

of the original feature representation among tasks. Typically, [41] uses a set of

non-linearly transformed feature sharing units for image semantic segmentation

and normal estimation. [42] uses the feature adapter to learn the non-linear

transformation of the tasks features to automatically evaluate the child’s speech

ability.

2.2. MTL based on shared model parameters

The methods of this class usually associate different tasks with their partial

model parameters or weights to realize sharing. According to their learning

manners used, they can roughly be divided into three sub-types:
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1) Weighted sharing of weight matrices: for the tasks represented in the

same subspace, they realize sharing by weightedly combining a set of weight

matrices among tasks. Typically, [43] weights the weight matrices among tasks

for boundary classification of keywords. [44] partitions the weight matrices

among tasks into common and private parts, then weights the common part

for multi-label classification. [45] weights the weight matrices at the same spa-

tial position in the pictures and transfers them to each task for image depth

estimation, segmentation, and surface normal prediction.

2) Common factor sharing via decomposing individual weight matrices: for

the weight matrix of each task model, they decompose these matrices into pri-

vate and common parts, where the common part is used for sharing. Typically,

[46] decomposes the weight matrices of multiple task models into common and

private parts, and further uses the common part for visual target tracking. [47]

sparsely decomposes the parameter tensor of the prediction model into multiple

parameter matrices, and linearly combines the corresponding parameter matri-

ces into a set of base matrices for sharing. [48] decomposes a collective matrix

of drug-disease correlations to share the correlation matrix between them for

drug discovery.

3) Low-rank structure sharing of model weight matrices: for the tasks repre-

sented in the same subspace, they capture the low-rank structure of the weight

matrix among tasks by specifically regularizing to realize sharing. Typically,

[49] uses feature tensor flattening of different tasks (i.e., a convex combination

of matrix trace norms) to capture its low-rank structure for multi-task learning.

[50] uses a set of low-rank matrices to capture the potential relationships be-

tween multiple tasks for Parkinson’s disease diagnosis. [51] uses a set of low-rank

matrices constrained by the nuclear norm for target detection in hyper-spectral

images.
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3. Our Method

Most of the previously mentioned methods extract useful knowledge among

tasks to make predictions. However, these methods are difficult to be further

improved when faced with the partially overlapped, even unoverlapped labels

among tasks. To overcome this difficulty, we try to leverage a big auxiliary task

with abundant labels and class information to assist learning these tasks with

limited data. As shown in Fig.2, our method mainly consists of three steps: 1)

pre-training a big overparameterized auxiliary network, 2) selectively extracting

the corresponding specific weight parameters for individual tasks from the aux-

iliary network, 3) transferring the weight parameters to these individual tasks

to assist them learning. Specifically, Section 3.1 formally defines the problem.

Section 3.2 details the proposed method, which extracts knowledge from the

pre-trained auxiliary network through a soft making matrix, and then transfers

them into individual tasks to form the corresponding networks. Finally, the

whole DAMTL network is formulated.

3.1. Problem formulation

Given a big auxiliary task Taux and a dataset Daux = {xi, yi}Ni=1 containing

N samples with xi ∈ Rd and its associated label yi ∈ {1, . . . , c}, where d and

c are the numbers of dimensions and classes in the dataset Daux, respectively.

Meanwhile we are given M individual tasks {Tj}Mj=1, and corresponding training

dataset Dj =
{
xjk, y

j
k

}Nj

k=1
with Nj samples, xjk ∈ Rd and its associated label

yjk ∈ {1, . . . , cj}, where cj is the number of classes in the dataset Dj . We assume

that the classset CTaux
of the auxiliary task contains all the individual tasks

classes CT , namely, CTaux
= CT1

∪ CT2
∪, ..., CTM

, where CTi
and CTj

(i 6= j) can

be partially overlapped, or even unoverlapped. This makes DAMTL applicable

under more general settings than most existing MTL methods.

3.2. Implementation

To learn the above tasks mentioned in Section 3.1, we first assume that

this big auxiliary task network has L convolutional layers and H fully con-
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Figure 2: Detailed framework of the DMTAL network. The top of the framework is the

auxiliary task network, and the rest are different task networks. All the filled circles of

different colors denote neurons, while dashed circles are neurons that are pruned. The red

and blue dotted boxes are the weight transfer layers and the alignment layers, respectively.
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nected (FC) layers, and pre-train the network to obtain two sets of weights

WTaux
=
{

W1
aux,W

2
aux, . . . ,W

L
aux

}
and fTaux

=
{
f1aux , f

2
aux , . . . , f

H
aux

}
, where

Wl
aux and fhaux represent the weights of the l-th convolutional layer and the

weights of the h-th FC layer, respectively. Then, we manage to acquire neces-

sary knowledge selectively from the trained big task to learn individual tasks by

soft masking the weights of each corresponding convolutional layer, as shown in

Fig 3. In what follows, we take the task Tj as a training example. To selectively

extract specific knowledge layer-wisely from the big auxiliary task network, we

introduce a soft masking matrix Ψl
Tj

as follows:

Sl
Tj

= Ψl
Tj
�Wl

aux, (1)

here Sl
Tj

denotes the extracted knowledge from the auxiliary task, which will

be transferred to the l-th convolutional layer in task Tj , Ψl
Tj

just takes non-

negative value, and � denotes the Hardmard product. Then, we use Eq.(2)

to activate the multiplication of Sl
Tj

and F l−1
Tj

to realize the knowledge being

transferred

F l
Tj

= σ
(
Sl
Tj
F l−1
Tj

+ bl
Tj

)
, (2)

where F l
Tj

is the feature representation of the l-th convolutional layer of the

task Tj network, σ is the activation function, and bl
Tj

is the bias vector.

Now optimizing the Sl
Tj

boils down to optimizing Ψl
Tj

. Specifically, in order

to ensure the prediction accuracy of the DAMTL network, we leverage Con-

ditional Maximum Mean Discrepancy (CMMD) [52] to align the conditional

probability distributions between Taux and Tj in the FC layers to alleviate the

possible class drift in the knowledge transfer from Taux to the Tj , which is

expressed as:

D(Taux , Tj) =

CTj∑
cj=1

‖ 1

k
Tj
cj

k
Tj
cj∑

k=1

fhaux(O
h−1
k )− 1

k
Tj
cj

k
Tj
cj∑

k=1

fhTj
(Oh−1

k )‖2H, (3)

where (Oh−1
k ) is the representation of the task Tj in the (h − 1)-th FC layer,
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upper left and upper right corners represent the soft masking matrix for different individual

tasks, and the squares in the lower left and right corners represent the extracted knowledge.

fhaux and fhTj
are the weights in the h-th FC layer, and k

Tj
cj is the number of

samples of the cj-th class in task Tj .

In practice, we use the inputs xk (k = 1, 2, . . . , n) and the labels yk (k =

1, 2, . . . , n) to minimize the following individual task loss

LTj

(
ŷ
Tj

k , y
Tj

k

)
= −

Nj∑
k=1

y
Tj

k (log ŷ
Tj

k ) + λ1

L∑
l=1

‖Ψl
Tj
‖1 + λ2

H∑
h=1

D(Taux , Tj), (4)

where ŷ
Tj

k is the predicted output, λ1 and λ2 are hyper-parameters, the first

term is the cross-entropy loss of task Tj , and the second term uses the `1 norm

to make the soft masking matrix Ψl
Tj

spare. Finally, we conduct joint training

of these tasks with the total loss

L(θ) =

M∑
j=1

αTj

Nj∑
k=1

LTj

(
ŷ
Tj

k , y
Tj

k

)
, (5)

where αTj
is the hyper-parameter to be adjusted.

12



The whole process of the proposed method to solve DAMTL is summarized

in Algorithm (1).

Algorithm 1: DAMTL

Notations: WTj
=
{

Wl
Tj

}L

l=1
and ΨTj

=
{

Ψl
Tj

}L

l=1
denote the

temporary variables and soft masking matrices in the task Tj network,

respectively, fTj
=
{
fhTj

}H

h=1
are the weights of the FC layers in the

task Tj network.

Input: Dj , WTaux
, λ1, λ2

Output: WTj , fTj , Ψl
Tj

1 random initialization Ψl
Tj

, initialize WTj with WTaux

2 repeat

3 for each convolution layer l do

4 Sl
Tj
←
(

Ψl
Tj
�Wl

Tj

)
5 F l

Tj
= σ

(
Sl
Tj
F l−1
Tj

+ blTj

)
6 end for

7 for each fully connected layer h do

8 align the conditional probability distributions between Taux and

Tj by Eq.(3)

9 end for

10 Update the parameters Wl
Tj

, ΨTj
and fTj

by the back-propagation

algorithm

11 until convergence;

4. Experiments

In this section, we use the VGG network [53] as the base-model and the Im-

ageNet dataset as a big auxiliary task to conduct two categories of experiments:

1) the label sets among tasks partially overlap; 2) the label sets among tasks do

not overlap.
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Table 2: Summarize statistics for datasets where part of the label sets overlap.

Datasets classes Size of image Overlapping classes

Caltech-101 10 200 ∗ 300 3

Caltech-256 10 371 ∗ 326 3

Amazon 10 150 ∗ 900/557 ∗ 28 3

Webcam 10 200 ∗ 150/900 ∗ 557 3

Dlsr 10 200 ∗ 150/900 ∗ 557 3

Product 10 117 ∗ 85/4384 ∗ 2686 3

4.1. Datasets

We conduct experiments on the following data sets and divide 70% of the

data as training set and the remaining 30% as testing set. The detailed infor-

mation is shown in Table 2 and Table 3.

The ImageNet Dataset1 is a computer vision dataset, which is used as an

auxiliary task in the experiment. The dataset contains 21,841 categories and

14,197,122 images.

The Office-Caltech Dataset2 is divided into two datasets, Office-Caltech10

and Office-Caltech31, and each dataset has 2,533 images, which are composed

of three different subsets Dslr, Amazon and Webcam. We randomly select 10

categories in each subset to do experiment.

The Office Home Dataset3 is composed of Art, Clipart, Product, Real-

World, and each subset covers 15500 images from 65 categories. We also ran-

domly select 10 categories in each subset as the dataset.

The Caltech-256 Dataset4 is a dataset collected by the California Institute

of Technology. It has 256 categories, and each category has more than 80 images

and a total of 30,607 images. We also randomly select 10 categories in this data

1http://image-net.org/download
2https://people.eecs.berkeley.edu/~jhoffman/domainadapt/
3http://hemanthdv.org/OfficeHome-Dataset/
4http://www.vision.caltech.edu/Image_Datasets/Caltech256/
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Table 3: Summarize the statistics of the datasets with unoverlapping label sets.

Datasets classes Size of image Overlapping classes

Art 10 117 ∗ 85/4384 ∗ 2686 —

Real World 10 117 ∗ 85/4384 ∗ 2686 —

Caltech-101 10 200 ∗ 300 —

Webcam 10 200 ∗ 150/900 ∗ 557 —

Amazon 10 200 ∗ 150/900 ∗ 557 —

Tiny ImagNet 10 64 ∗ 64 —

set for experiment.

The Tiny ImageNet Dataset5 is a dataset collected by Stanford Uni-

versity, which is a subset of the ImageNet dataset. The dataset contains 200

categories and a total of 100,000 images, and the size of each image is 3∗64∗64.

We randomly select 10 categories from the Tiny ImageNet Dataset for experi-

ments.

4.2. Comparison Methods

For evaluation, we use common single-task and multi-tasks network archi-

tectures to train each task separately/jointly, and its experimental results serve

as our single-task and multi-tasks baseline. Simultaneously, we compare our

proposed method with the following MTL methods:

Single task6 [53]: This method uses a single VGG network to learn the

predictive model for each independent task.

Multi-task7: This method uses multiple identical VGG networks to jointly

learn a multi-task prediction model.

Cross-Stitch8 [54]: This method uses a cross stitch unit to learn the com-

5https://www.kaggle.com/c/tiny-imagenet
6https://github.com/machrisaa/tensorflow-vgg
7https://github.com/luntai/VGG16_Keras_TensorFlow
8https://github.com/helloyide/Cross-stitch-Networks-for-Multi-task-Learning
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mon features in two network feature layers for learning multiple tasks.

NDDR-CNN9 [55]: This method uses the NDDR module to automatically

integrate the features of each sub-network layer for MTL.

MTAL10[12]: This method leverages the similarity between convolution

kernels to capture common knowledge among multi-network for joint learning

of various tasks.

DAMTL11: This method uses the abound knowledge of a lager auxiliary

task to help joint learning of multiple tasks.

4.3. Hyper-Parameter Tuning

In the contrasted deep neural network methods, we adjust the hidden units,

learning rate, and the number of training steps in each layer according to the

parameter settings of the corresponding reference. In DAMTL, we adjust the

hyper-parameters in the same way. Specifically, for all experiments, we set

the learning rate η to 0.01, αTj
to 0.01, λ1 and λ2 are 0.9. In addition, in

DAMTL network training, we select the rectified linear unit (ReLU) function

as the activation function σ. All the deep learning models are implemented by

Tensorflow.

4.4. Results of Model Performance:

We conduct experiments on the above-mentioned datasets and compare our

methods with the state-of-the-arts (SOTAs), while analyzing the experimental

results.

First, the performance of the DAMTL method shown in Table 4 and Table

5 is significantly better than other methods. In the PO-2 group of experiments,

the DAMTL method is better than the MTAL methods.

Secondly, Table 4 shows that most of the MTL methods are better than

the single-task learning method, which demonstrate that using the relationship

9https://github.com/ethanygao/NDDR-CNN
10http://parnec.nuaa.edu.cn/3021/list.htm
11http://parnec.nuaa.edu.cn/3021/list.htm
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Table 4: The performance comparison of various methods in the experiment of partially

overlapping label sets between tasks. Among them, the bold numbers are the best classification

results, and the underlined numbers are the sub-optimal classification results.

Methods
PO-1 PO-2 PO-3

Caltech-101 Caltech-256 Amazon Webcam Dlsr Product

Single-Task 0.76± 0.037 0.45± 0.037 0.74± 0.036 0.63± 0.038 0.77± 0.031 0.63± 0.035

Multi-task 0.76± 0.050 0.53± 0.055 0.80± 0.046 0.69± 0.049 0.80± 0.046 0.68± 0.049

Cross-Stich 0.75± 0.050 0.53± 0.059 0.80± 0.046 0.67± 0.054 0.79± 0.042 0.65± 0.056

NDDR-CNN 0.75± 0.054 0.51± 0.055 0.79± 0.042 0.67± 0.044 0.75± 0.049 0.67± 0.050

MTAL 0.78± 0.054 0.53± 0.051 0.81± 0.042 0.69± 0.048 0.80± 0.038 0.66± 0.055

DAMTL 0.80± 0.050 0.54± 0.059 0.80± 0.044 0.70± 0.048 0.84± 0.042 0.74± 0.052

Table 5: Performance comparison of various methods in unoverlapping experiments of label

sets between tasks. Among them, the bold numbers are the best classification results, and

the underlined numbers are the sub-optimal classification results.

Methods
NO-1 NO-2 NO-3

Art Real World Caltech-101 Webcam Amazon T-ImagNet

Single-Task 0.60± 0.039 0.51± 0.043 0.76± 0.037 0.63± 0.038 0.77± 0.031 0.51± 0.048

Multi-task 0.62± 0.055 0.53± 0.054 0.78± 0.050 0.68± 0.050 0.78± 0.048 0.53± 0.058

Cross-Stich 0.63± 0.057 0.51± 0.056 0.78± 0.048 0.67± 0.050 0.79± 0.046 0.52± 0.062

NDDR-CNN 0.59± 0.056 0.52± 0.056 0.76± 0.051 0.66± 0.050 0.79± 0.044 0.46± 0.461

MTAL 0.61± 0.056 0.52± 0.058 0.73± 0.046 0.69± 0.044 0.80± 0.042 0.54± 0.067

DAMTL 0.67± 0.050 0.6± 0.047 0.80± 0.050 0.72± 0.044 0.81± 0.047 0.54± 0.065

between tasks to capture their useful information for interaction can promote

the effectiveness of the joint learning of multiple tasks. In addition, we find

that different multi-task learning methods have different performance results,

which are caused by the differences among tasks. For example, the experimental

results of the dataset Caltech-101 in PO-1 show that the Cross-Stich method

and the NDDR-CNN method are lower than the accuracy of the single-task

learning method.

Finally, the performance of DAMTL is better than that other methods

in all datasets, which shows that extracting and transferring features from a

big auxiliary task (which contains the class label information in all individual

tasks) can help the joint learning of multiple tasks with partially overlap or even

unoverlapping label sets and further improve DAMTL performance.

Also, Fig.4 shows the performance comparison of the mean and standard
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Figure 4: Performance comparison of various methods on mean and mean square error. Sub-

Fig.(a) shows that the performance of various methods in the mean and mean square error of

the scenario where the label sets between tasks are partially overlapped is various. Sub-Fig.(b)

shows that the performance of various methods in the mean value and mean square error of

the scenario where the label sets between tasks are completely unoverlapping is various.

deviation of the classification accuracy of various methods in the two categorical

experiments. We observe that the overall performance of the DAMTL method is

better than that other methods. The above experimental results are consistent

with our theoretical analysis.

4.5. Time cost comparison

The result is shown in Fig.5 (a), we observe that when the label sets among

tasks partially overlap, although the single-task method takes the shortest time,

it does not use shared information, so the accuracy is the lowest. The NDDR-

CNN method takes the longest time, but the accuracy is the second lowest

(even worse than the multi-task benchmark). This indicates that the differ-

ences among tasks lead to adversarial interference in the learning process of this

method. In addition, the multitasking, Cross-Stich, NDDR-CNN and MTAL

methods are comparable in time cost, and our DAMTL method has the highest

accuracy. As shown in Fig.5 (b), we observe that when the label sets among

tasks do not overlap, the single-task method takes the shortest time, but its

accuracy is the lowest. MTAL uses the convolution kernel sharing technology,
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Figure 5: Comparison of the time cost (in minutes) for MTL on partially overlapping and

unoverlapping label sets.

Table 6: Results of ablation study when task label sets partially overlap. DAMTLFa repre-

sents the DAMTL network without feature alignment.

Methods
PO-1 PO-2 PO-3

Caltech-101 Caltech-256 Amazon Webcam Dlsr Product

DAMTL 0.80± 0.050 0.54± 0.059 0.80± 0.044 0.70± 0.048 0.84± 0.042 0.74± 0.052

DAMTLFa 0.75± 0.053 0.50± 0.057 0.79± 0.046 0.65± 0.054 0.63± 0.049 0.76± 0.052

thus spending the second shortest time. In conclusion, our method has rela-

tively low time cost and the highest accuracy in scenarios where the task label

sets are partially overlapped or even unoverlapped.

4.6. Ablation Study

In this section, we demonstrate that the addition of Eq.(3) to DAMTL

through ablation analysis is very important to achieve state-of-the-art perfor-

mance. We first study the performance of multiple tasks with overlapping par-

tial label sets without using Eq.(3). The performance of DAMTL network on

Caltech-101, Caltech-256, Amazon, Webcam, Dlsr, and Product is shown on

Table 6. Obviously, when the rest of the data set except Product, the perfor-

mance of DAMTL is reduced. Then, we delete the Eq.(3) part for unoverlapping

label sets between tasks. The performance of DAMTL network on Art, Real

World, Caltech-101, Webcam, Amazon, and T-ImagNet is shown on Table 7.
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Table 7: Results of ablation study when task label sets do not overlap. DAMTLFa represents

the DAMTL network without feature alignment.

Methods
NO-1 NO-2 NO-3

Art Real World Caltech-101 Webcam Amazon T-ImagNet

DAMTL 0.67± 0.050 0.6± 0.047 0.80± 0.050 0.72± 0.044 0.81± 0.047 0.54± 0.065

DAMTLFa 0.61± 0.048 0.48± 0.048 0.75± 0.044 0.64± 0.050 0.79± 0.041 0.50± 0.045

The performance of DAMT on all data sets is significantly degraded. Finally,

we use Eq.(3) DAMTL network through ablation analysis which can effectively

improve performance.

4.7. Model convergence analysis

In this section, we analyze the convergence of our proposed method on two

benchmarks, i.e., Caltech-101 and Caltech-256 and the values of the objective

function (5) with respect to iterations on the two datasets are shown in Fig.6 (a)

and (b) respectively. From Fig.6 (a), we can see that the loss curves on the data

sets Caltech-101 and Caltech-256 tend to converge after about 50 iterations. In

Fig.6 (b), the loss curves on the data sets Art and Real-world stabilize after

about 70 and 50 iterations, respectively.

(a) (b)

Figure 6: Sub-Fig.(a) shows the convergence curve of DAMTL when the label sets among tasks

partially overlapping; sub-fig. Sub-Fig.(b) shows the convergence curve of DAMTL when the

label sets among network tasks do not overlap.
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5. Conclusion

In this work, we provide a deep multi-task learning framework DAMTL,

which is used to deal with multi-tasks with partial or unoverlapping label sets

among tasks. Compared with the previous MTL method, DAMTL leverages

big auxiliary tasks to jointly learn multiple tasks with partially overlapping or

unoverlapping label sets. In addition, the auxiliary strategies in DAMTL can

be flexibly embedded in other deep multi-task learning frameworks or transfer

learning frameworks. In order to evaluate the performance of DAMTL, we

conduct experiments on twelve public datasets and compared state-of-the-art

MTL methods. Experimental results show that the DAMTL framework has

significant advantages. In summary, our work can enrich MTL research to a

certain extent from two aspects: 1) a novel adaptive MT learning mechanism is

used to deal with multiple tasks when the label sets are partially overlapped or

even unoverlapped. 2) A new knowledge extraction strategy that uses a set of

soft masking matrices to adaptively prune the hidden neurons in the auxiliary

task network to extract specific knowledge that assist the current task learn to

form a corresponding network for each task. However, in this work, we haven’t

solved the interpretable problems in MTL, and the following work will focus on

such problems.
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