References
Bommasani R, Hudson D A, Adeli E, Altman R, Arora S, et al. On the opportunities and risks of foundation models. 2021, arXiv preprint arXiv: 2108.07258
Xi Z, Chen W, Guo X, He W, Ding Y, et al. The rise and potential of large language model based agents: a survey. 2023, arXiv preprint arXiv: 2309.07864
Wang L, Ma C, Feng X, Zhang Z, Yang H, Zhang J, Chen Z, Tang J, Chen X, Lin Y, Zhao W X, Wei Z, Wen J. A survey on large language model based autonomous agents. Frontiers of Computer Science, 2024, 18(6): 186345
Gronauer S, Diepold K. Multi-agent deep reinforcement learning: a survey. Artificial Intelligence Review, 2022, 55(2): 895–943
Qian C, Liu W, Liu H, Chen N, Dang Y, Li J, Yang C, Chen W, Su Y, Cong X, Xu J, Li D, Liu Z, Sun M. ChatDev: communicative agents for software development. 2023, arXiv preprint arXiv: 2307.07924
Park J S, O’Brien J, Cai C J, Morris M R, Liang P, Bernstein M S. Generative agents: interactive simulacra of human behavior. In: Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology. 2023, 2
Chan C M, Chen W, Su Y, Yu J, Xue W, Zhang S, Fu J, Liu Z. ChatEval: towards better LLM-based evaluators through multi-agent debate. In: Proceedings of the 12th International Conference on Learning Representations. 2024
Ke Z, Liu B. Continual learning of natural language processing tasks: a survey. 2022, arXiv preprint arXiv: 2211.12701
Wang G, Xie Y, Jiang Y, Mandlekar A, Xiao C, Zhu Y, Fan L, Anandkumar A. Voyager: an open-ended embodied agent with large language models. 2023, arXiv preprint arXiv: 2305.16291
Yang J C, Dailisan D, Korecki M, Hausladen C I, Helbing D. LLM voting: human choices and AI collective decision making. 2024, arXiv preprint arXiv: 2402.01766
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests The authors declare that they have no competing interests or financial conflicts to disclose.
Rights and permissions
About this article
Cite this article
Gong, C., Li, X. Agents with foundation models: advance and vision. Front. Comput. Sci. 19, 194330 (2025). https://doi.org/10.1007/s11704-024-40311-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11704-024-40311-2