Skip to main content

Advertisement

Log in

Privacy dilemmas and opportunities in large language models: a brief review

  • Review Article
  • Published:
Frontiers of Computer Science Aims and scope Submit manuscript

Abstract

The growing number of cases indicates that large language model (LLM) brings transformative advancements while raising privacy concerns. Despite promising recent surveys proposed in the literature, there is still a lack of comprehensive analysis dedicated to text privacy specifically for LLM. By comprehensively collecting LLM privacy research, we summarize five privacy issues and their corresponding solutions during both model training and invocation and extend our analysis to three research focuses in LLM application. Moreover, we propose five further research directions and provide prospects for LLM native security mechanisms. Notably, we find that most LLM privacy research is still in the technical exploration phase, with the hope that this work can assist in LLM privacy development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitchell R. Samsung fab data leak: how ChatGPT exposed sensitive information. See electropages.com/blog/2023/04/how-chatgpt-exposed-sensitive-information website, 2023

    Google Scholar 

  2. Gupta M, Akiri C, Aryal K, Parker E, Praharaj L. From ChatGPT to THreatGPT: impact of generative AI in cybersecurity and privacy. IEEE Access, 2023, 11: 80218–80245

    Article  Google Scholar 

  3. Nasr M, Carlini N, Hayase J, Jagielski M, Cooper A F, Ippolito D, Choquette-Choo C A, Wallace E, Tramèr F, Lee K. Scalable extraction of training data from (production) language models. 2023, arXiv preprint arXiv: 2311.17035

    Google Scholar 

  4. Coles C. 11% of data employees paste into ChatGPT is confidential. Cyberhaven. See cyberhaven.com/blog/4–2-of-workers-have-pasted-company-data-into-chatgpt website, 2023

    MATH  Google Scholar 

  5. Staab R, Vero M, Balunovic M, Vechev M. Beyond memorization: violating privacy via inference with large language models. In: Proceedings of the 12th International Conference on Learning Representations. 2024

    MATH  Google Scholar 

  6. Mehnaz S, Dibbo S V, Kabir E, Li N, Bertino E. Are your sensitive attributes private? Novel model inversion attribute inference attacks on classification models. In: Proceedings of the 31st USENIX Security Symposium (USENIX Security 22). 2022, 4579–4596

    Google Scholar 

  7. Carlini N, Tramèr F, Wallace E, Jagielski M, Herbert-Voss A, Lee K, Roberts A, Brown T B, Song D, Erlingsson U, Oprea A, Raffel C. Extracting training data from large language models. In: Bailey M D, Greenstadt R, eds. 30th USENIX Security Symposium. Berkeley: USENIX Association, 2021, 2633–2650

    Google Scholar 

  8. Huang L, Yu W, Ma W, Zhong W, Feng Z, Wang H, Chen Q, Peng W, Feng X, Qin B, Liu T. A survey on hallucination in large language models: principles, taxonomy, challenges, and open questions. 2023, arXiv preprint arXiv: 2311.05232

    MATH  Google Scholar 

  9. Hartmann V, Suri A, Bindschaedler V, Evans D, Tople S, West R. SoK: memorization in general-purpose large language models. 2023, arXiv preprint arXiv: 2310.18362

    Google Scholar 

  10. Wang Y, Pan Y, Yan M, Su Z, Luan T H. A survey on ChatGPT: AI-generated contents, challenges, and solutions. IEEE Open Journal of the Computer Society, 2023, 4: 280–302

    Article  MATH  Google Scholar 

  11. Kshetri N. Cybercrime and privacy threats of large language models. IT Professional, 2023, 25(3): 9–13

    Article  Google Scholar 

  12. Wang T, Zhang Y, Qi S, Zhao R, Xia Z, Weng J. Security and privacy on generative data in AIGC: a survey. ACM Computing Surveys, 2024

    Google Scholar 

  13. Mozes M, He X, Kleinberg B, Griffin L D. Use of LLMs for illicit purposes: threats, prevention measures, and vulnerabilities. 2023, arXiv preprint arXiv: 2308.12833

    Google Scholar 

  14. Smith V, Shamsabadi A S, Ashurst C, Weller A. Identifying and mitigating privacy risks stemming from language models: a survey. 2023, arXiv preprint arXiv: 2310.01424

    Google Scholar 

  15. Yao Y, Duan J, Xu K, Cai Y, Sun Z, Zhang Y. A survey on large language model (LLM) security and privacy: the good, the bad, and the ugly. High-Confidence Computing, 2024, 4(2): 100211

    Article  Google Scholar 

  16. Iqbal U, Kohno T, Roesner F. LLM platform security: applying a systematic evaluation framework to OpenAI’s ChatGPT plugins. In: Proceedings of the 7th AAAI/ACM Conference on AI, Ethics, and Society. 2024, 611–623

    Google Scholar 

  17. Brown H, Lee K, Mireshghallah F, Shokri R, Tramèr F. What does it mean for a language model to preserve privacy? In: Proceedings of 2022 ACM Conference on Fairness, Accountability, and Transparency. 2022, 2280–2292

    Chapter  MATH  Google Scholar 

  18. Zhang D, Finckenberg-Broman P, Hoang T, Pan S, Xing Z, Staples M, Xu X. Right to be forgotten in the era of large language models: implications, challenges, and solutions. AI and Ethics, 20241-10

  19. Neel S, Chang P. Privacy issues in large language models: a survey. 2023, arXiv preprint arXiv: 2312.06717

    MATH  Google Scholar 

  20. Das B C, Amini M H, Wu Y. Security and privacy challenges of large language models: a survey. 2024, arXiv preprint arXiv: 2402.00888

    MATH  Google Scholar 

  21. Ye J, Chen X, Xu N, Zu C, Shao Z, Liu S, Cui Y, Zhou Z, Gong C, Shen Y, Zhou J, Chen S, Gui T, Zhang Q, Huang X. A comprehensive capability analysis of GPT-3 and GPT-3.5 series models. 2023, arXiv preprint arXiv: 2303.10420

    Google Scholar 

  22. Hoffmann J, Borgeaud S, Mensch A, Buchatskaya E, Cai T, Rutherford E, de Las Casas D, Hendricks L A, Welbl J, Clark A, Hennigan T, Noland E, Millican K, van den Driessche G, Damoc B, Guy A, Osindero S, Simonyan K, Elsen E, Vinyals O, Rae J W, Sifre L. An empirical analysis of compute-optimal large language model training. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. 2022, 30016–30030

    Google Scholar 

  23. Yang H, Liu X, Wang C D. FinGPT: open-source financial large language models. 2023, arXiv preprint arXiv: 2306.06031

    MATH  Google Scholar 

  24. Li Y, Li Z, Zhang K, Dan R, Jiang S, Zhang Y. ChatDoctor: a medical chat model fine-tuned on a large language model meta-AI (LLaMA) using medical domain knowledge. 2023, arXiv preprint arXiv: 2303.14070

    MATH  Google Scholar 

  25. Hu E J, Shen Y, Wallis P, Allen-Zhu Z, Li Y, Wang S, Wang L, Chen W. LoRA: low-rank adaptation of large language models. In: Proceedings of the 10th International Conference on Learning Representations. 2022

    MATH  Google Scholar 

  26. Lester B, Al-Rfou R, Constant N. The power of scale for parameter-efficient prompt tuning. In: Proceedings of 2021 Conference on Empirical Methods in Natural Language Processing. 2021, 3045–3059

    Chapter  MATH  Google Scholar 

  27. Zhao Z, Wallace E, Feng S, Klein D, Singh S. Calibrate before use: improving few-shot performance of language models. In: Proceedings of the 38th International Conference on Machine Learning. 2021, 12697–12706

    MATH  Google Scholar 

  28. Ouyang L, Wu J, Jiang X, Almeida D, Wainwright C, Mishkin P, Zhang C, Agarwal S, Slama K, Ray A, Schulman J, Hilton J, Kelton F, Miller L, Simens M, Askell A, Welinder P, Christiano P, Leike J, Lowe L. Training language models to follow instructions with human feedback. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. 2022, 27730–27744

    Google Scholar 

  29. Ullah I, Hassan N, Gill S S, Suleiman B, Ahanger T A, Shah Z, Qadir J, Kanhere S S. Privacy preserving large language models: ChatGPT case study based vision and framework. 2023, arXiv preprint arXiv: 2310.12523

    Google Scholar 

  30. Achiam J, Adler S, Agarwal S, Ahmad L, Akkaya I, et al. GPT-4 technical report. 2023, arXiv preprint arXiv: 2303.08774

    Google Scholar 

  31. Jayaraman B, Ghosh E, Chase M, Roy S, Dai W, Evans D. Combing for credentials: active pattern extraction from smart reply. In: Proceedings of 2024 IEEE Symposium on Security and Privacy (SP). 2023, 1443–1461

    Google Scholar 

  32. Mireshghallah F, Goyal K, Uniyal A, Berg-Kirkpatrick T, Shokri R. Quantifying privacy risks of masked language models using membership inference attacks. In: Proceedings of 2022 Conference on Empirical Methods in Natural Language Processing. 2022, 8332–8347

    Chapter  Google Scholar 

  33. Mouhammad N, Daxenberger J, Schiller B, Habernal I. Crowdsourcing on sensitive data with privacy-preserving text rewriting. In: Proceedings of the 17th Linguistic Annotation Workshop (LAW-XVII). 2023, 73–84

    Chapter  Google Scholar 

  34. Tang X, Shin R, Inan H A, Manoel A, Mireshghallah F, Lin Z, Gopi S, Kulkarni J, Sim R. Privacy-preserving in-context learning with differentially private few-shot generation. In: Proceedings of the 12th International Conference on Learning Representations. 2024

    Google Scholar 

  35. Tang C, Liu Z, Ma C, Wu Z, Li Y, Liu W, Zhu D, Li Q, Li X, Liu T, Fan L. PolicyGPT: automated analysis of privacy policies with large language models. 2023, arXiv preprint arXiv: 2309.10238

    MATH  Google Scholar 

  36. Pan S, Hoang T, Zhang D, Xing Z, Xu X, Lu Q, Staples M. Toward the cure of privacy policy reading phobia: automated generation of privacy nutrition labels from privacy policies. 2023, arXiv preprint arXiv: 2306.10923

    Google Scholar 

  37. Chanenson J, Pickering M, Apthorpe N. Automating governing knowledge commons and contextual integrity (GKC-CI) privacy policy annotations with large language models. 2023, arXiv preprint arXiv: 2311.02192

    Google Scholar 

  38. Lukas N, Salem A, Sim R, Tople S, Wutschitz L, Zanella-Béguelin S. Analyzing leakage of personally identifiable information in language models. In: Proceedings of 2013 IEEE Symposium on Security and Privacy (SP). 2023, 346–363

    MATH  Google Scholar 

  39. Chen X, Tang S, Zhu R, Yan S, Jin L, Wang Z, Su L, Zhang Z, Wang X, Tang H. The Janus interface: how fine-tuning in large language models amplifies the privacy risks. 2023, arXiv preprint arXiv: 2310.15469

    MATH  Google Scholar 

  40. Huang J, Shao H, Chang K C C. Are large pre-trained language models leaking your personal information? In: Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2022. 2022, 2038–2047

    Chapter  MATH  Google Scholar 

  41. Kandpal N, Wallace E, Raffel C. Deduplicating training data mitigates privacy risks in language models. In: Proceedings of the 39th International Conference on Machine Learning. 2022, 10697–10707

    MATH  Google Scholar 

  42. Lee K, Ippolito D, Nystrom A, Zhang C, Eck D, Callison-Burch C, Carlini N. Deduplicating training data makes language models better. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2022, 8424–8445

    Chapter  Google Scholar 

  43. Zhang C, Ippolito D, Lee K, Jagielski M, Tramèr F, Carlini N. Counterfactual memorization in neural language models. In: Proceedings of the 37th International Conference on Neural Information Processing Systems. 2023, 39321–39362

    MATH  Google Scholar 

  44. Yue X, Inan H A, Li X, Kumar G, McAnallen J, Shajari H, Sun H, Levitan D, Sim R. Synthetic text generation with differential privacy: a simple and practical recipe. In: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2023, 1321–1342

    Chapter  Google Scholar 

  45. Majmudar J, Dupuy C, Peris C, Smaili S, Gupta R, Zemel R. Differentially private decoding in large language models. 2022, arXiv preprint arXiv: 2205.13621

    Google Scholar 

  46. Xiao Y, Jin Y, Bai Y, Wu Y, Yang X, Luo X, Yu W, Zhao X, Liu Y, Gu Q, Chen H, Wang W, Cheng W. PrivacyMind: large language models can be contextual privacy protection learners. 2023, arXiv preprint arXiv: 2310.02469

    Google Scholar 

  47. Behnia R, Ebrahimi M R, Pacheco J, Padmanabhan B. EW-Tune: a framework for privately fine-tuning large language models with differential privacy. In: Proceedings of 2022 IEEE International Conference on Data Mining Workshops (ICDMW). 2022, 560–566

    Chapter  MATH  Google Scholar 

  48. West P, Lu X, Holtzman A, Bhagavatula C, Hwang J D, Choi Y. Reflective decoding: beyond unidirectional generation with off-the-shelf language models. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). 2021, 1435–1450

    Google Scholar 

  49. Gokaslan A, Cohen V. Openwebtext corpus. See Skylion007.github.io/OpenWebTextCorpus website, 2019

    Google Scholar 

  50. Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, Zhou Y, Li W, Liu P J. Exploring the limits of transfer learning with a unified text-to-text transformer. The Journal of Machine Learning Research, 2020, 21(1): 140

    MathSciNet  Google Scholar 

  51. Beyer A, Kauermann G, Schütze H. Embedding space correlation as a measure of domain similarity. In: Proceedings of the 12th Language Resources and Evaluation Conference. 2020, 2431–2439

    MATH  Google Scholar 

  52. Chelba C, Mikolov T, Schuster M, Ge Q, Brants T, Koehn P, Robinson T. One billion word benchmark for measuring progress in statistical language modeling. 2013, arXiv preprint arXiv: 1312.3005

    Google Scholar 

  53. Zellers R, Holtzman A, Rashkin H, Bisk Y, Farhadi A, Roesner F, Choi Y. Defending against neural fake news. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems. 2019, 812

    Google Scholar 

  54. Tur G, Hakkani-Tür D, Heck L. What is left to be understood in ATIS? In: Proceedings of 2010 IEEE Spoken Language Technology Workshop. 2010, 19–24

    Chapter  MATH  Google Scholar 

  55. Coucke A, Saade A, Ball A, Bluche T, Caulier A, Leroy D, Doumouro C, Gisselbrecht T, Caltagirone F, Lavril T, Primet M, Dureau J. Snips voice platform: an embedded spoken language understanding system for private-by-design voice interfaces. 2018, arXiv preprint arXiv: 1805.10190

    Google Scholar 

  56. Li J, Ott M, Cardie C. Identifying manipulated offerings on review portals. In: Proceedings of 2013 Conference on Empirical Methods in Natural Language Processing. 2013, 1933–1942

    Chapter  MATH  Google Scholar 

  57. Wang A, Singh A, Michael J, Hill F, Levy O, Bowman S R. Glue: a multi-task benchmark and analysis platform for natural language understanding. In: Proceedings of 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. 2018, 353–355

    Chapter  Google Scholar 

  58. Socher R, Perelygin A, Wu J, Chuang J, Manning C D, Ng A Y, Potts C. Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of 2013 Conference on Empirical Methods in Natural Language Processing. 2013, 1631–1642

    Chapter  Google Scholar 

  59. Williams A, Nangia N, Bowman S R. A broad-coverage challenge corpus for sentence understanding through inference. In: Proceedings of 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). 2017, 1112–1122

    Google Scholar 

  60. Chalkidis I, Androutsopoulos I, Aletras N. Neural legal judgment prediction in English. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019, 4317–4323

    Chapter  MATH  Google Scholar 

  61. Klimt B, Yang Y. The Enron corpus: a new dataset for email classification research. In: Proceedings of the 15th European Conference on Machine Learning. 2004, 217–226

    MATH  Google Scholar 

  62. Zhang X, Zhao J, LeCun Y. Character-level convolutional networks for text classification. In: Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015, 649–657

    MATH  Google Scholar 

  63. Liu J, Cyphers S, Pasupat P, McGraw I, Glass J. A conversational movie search system based on conditional random fields. In: Proceedings of the 13th Annual Conference of the International Speech Communication Association. 2012, 2454–2457

    Google Scholar 

  64. Villalobos P, Sevilla J, Heim L, Besiroglu T, Hobbhahn M, Ho A. Will we run out of data? An analysis of the Limits of scaling datasets in machine learning. 2022, arXiv preprint arXiv: 2211.04325

    Google Scholar 

  65. Chen J, Yang D. Unlearn what you want to forget: efficient unlearning for LLMs. In: Proceedings of 2023 Conference on Empirical Methods in Natural Language Processing. 2023, 12041–12052

    Chapter  MATH  Google Scholar 

  66. Borkar J. What can we learn from data leakage and unlearning for law? 2023, arXiv preprint arXiv: 2307.10476

    MATH  Google Scholar 

  67. Hu Z, Zhang Y, Xiao M, Wang W, Feng F, He X. Exact and efficient unlearning for large language model-based recommendation. 2024, arXiv preprint arXiv: 2404.10327

  68. Ziegler C N, McNee S M, Konstan J A, Lausen G. Improving recommendation lists through topic diversification. In: Proceedings of the 14th International Conference on World Wide Web. 2005, 22–32

    Chapter  MATH  Google Scholar 

  69. Harper F M, Konstan J A. The MovieLens datasets: history and context. ACM Transactions on Interactive Intelligent Systems (TiiS), 2015, 5(4): 19

    MATH  Google Scholar 

  70. Jang J, Yoon D, Yang S, Cha S, Lee M, Logeswaran L, Seo M. Knowledge unlearning for mitigating privacy risks in language models. In: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2023, 14389–14408

    Chapter  Google Scholar 

  71. Wang L, Chen T, Yuan W, Zeng X, Wong K F, Yin H. KGA: a general machine unlearning framework based on knowledge gap alignment. In: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2023, 13264–13276

    Chapter  Google Scholar 

  72. Tuggener D, von Däniken P, Peetz T, Cieliebak M. LEDGAR: a large-scale multi-label corpus for text classification of legal provisions in contracts. In: Proceedings of the 12th Language Resources and Evaluation Conference. 2020, 1235–1241

    Google Scholar 

  73. Cettolo M, Niehues J, Stüker S, Bentivogli L, Federico M. Report on the 11th IWSLT evaluation campaign. In: Proceedings of the 11th International Workshop on Spoken Language Translation: Evaluation Campaign. 2014, 2–17

    Google Scholar 

  74. Zhang S, Dinan E, Urbanek J, Szlam A, Kiela D, Weston J. Personalizing dialogue agents: I have a dog, do you have pets too? In: Proceedings of the 6th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2018, 2204–2213

    Chapter  Google Scholar 

  75. Maas A, Daly R E, Pham P T, Huang D, Ng A Y, Potts C. Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. 2011, 142–150

    Google Scholar 

  76. Gliwa B, Mochol I, Biesek M, Wawer A. SAMSum corpus: a human-annotated dialogue dataset for abstractive summarization. In: Proceedings of the 2nd Workshop on New Frontiers in Summarization. 2019, 70–79

    Chapter  MATH  Google Scholar 

  77. Zaman K, Choshen L, Srivastava S. Fuse to forget: bias reduction and selective memorization through model fusion. In: Proceedings of 2024 Conference on Empirical Methods in Natural Language Processing. 2024, 18763–18783

    Chapter  Google Scholar 

  78. Rangel F, Rosso P, Verhoeven B, Daelemans W, Potthast M, Stein B. Overview of the 4th author profiling task at pan 2016: cross-genre evaluations. In: Proceedings of the Working Notes Papers of the CLEF 2016 Evaluation Labs. 2016, 750–784

    Google Scholar 

  79. Pawelczyk M, Neel S, Lakkaraju H. In-context unlearning: language models as few-shot unlearners. In: Proceedings of the 41st International Conference on Machine Learning. 2024

    MATH  Google Scholar 

  80. Bourtoule L, Chandrasekaran V, Choquette-Choo C A, Jia H, Travers A, Zhang B, Lie D, Papernot N. Machine unlearning. In: Proceedings of 2021 IEEE Symposium on Security and Privacy (SP). 2021, 141–159

    Chapter  Google Scholar 

  81. Koch K, Soll M. No matter how you slice it: machine unlearning with SISA comes at the expense of minority classes. In: Proceedings of 2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML). 2023, 622–637

    Chapter  MATH  Google Scholar 

  82. Li X L, Liang P. Prefix-tuning: optimizing continuous prompts for generation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). 2021, 4582–4597

    MATH  Google Scholar 

  83. Wen R, Wang T, Backes M, Zhang Y, Salem A. Last one standing: a comparative analysis of security and privacy of soft prompt tuning, LoRA, and in-context learning. 2023, arXiv preprint arXiv: 2310.11397

    Google Scholar 

  84. Liu R, Wang T, Cao Y, Xiong L. PreCurious: how innocent pre-trained language models turn into privacy traps. 2024, arXiv preprint arXiv: 2403.09562

    Google Scholar 

  85. Qi X, Zeng Y, Xie T, Chen P Y, Jia R, Mittal P, Henderson P. Fine-tuning aligned language models compromises safety, even when users do not intend to! In: Proceedings of the 12th International Conference on Learning Representations. 2024

    MATH  Google Scholar 

  86. Li H, Guo D, Fan W, Xu M, Huang J, Meng F, Song Y. Multi-step jailbreaking privacy attacks on ChatGPT. In: Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2023. 2023, 4138–4153

    Chapter  MATH  Google Scholar 

  87. Deng G, Liu Y, Li Y, Wang K, Zhang Y, Li Z, Wang H, Zhang T, Liu Y. MASTERKEY: automated jailbreaking of large language model Chatbots. In: Proc. ISOC NDSS. 2024

    Google Scholar 

  88. Carlini N, Liu C, Erlingsson Ú, Kos J, Song D. The secret sharer: evaluating and testing unintended memorization in neural networks. In: Proceedings of the 28th USENIX Conference on Security Symposium. 2019, 267–284

    Google Scholar 

  89. Ai4Privacy. PII Masking 300k Dataset. See huggingface.co/datasets/ai4privacy/pii-masking-300k website, 2024

    Google Scholar 

  90. Merity S, Xiong C, Bradbury J, Socher R. Pointer sentinel mixture models. In: Proceedings of the 5th International Conference on Learning Representations. 2016

    MATH  Google Scholar 

  91. Kornblith S, Norouzi M, Lee H, Hinton G. Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning. 2019, 3519–3529

    MATH  Google Scholar 

  92. Zhang Y, Ippolito D. Prompts should not be seen as secrets: systematically measuring prompt extraction attack success. 2023, arXiv preprint arXiv: 2307.06865

    Google Scholar 

  93. Duan H, Dziedzic A, Papernot N, Boenisch F. Flocks of stochastic parrots: differentially private prompt learning for large language models. In: Proceedings of the 37th International Conference on Neural Information Processing Systems. 2024, 3358

    MATH  Google Scholar 

  94. Zhang X, Chen C, Xie Y, Chen X, Zhang J, Xiang Y. A survey on privacy inference attacks and defenses in cloud-based deep neural network. Computer Standards & Interfaces, 2023, 83: 103672

    Article  MATH  Google Scholar 

  95. Plant R, Gkatzia D, Giuffrida V. CAPE: Context-Aware Private Embeddings for private language learning. In: Proceedings of 2021 Conference on Empirical Methods in Natural Language Processing. 2021, 7970–7978

    Chapter  MATH  Google Scholar 

  96. Li Y, Tan Z, Liu Y. Privacy-preserving prompt tuning for large language model services. 2023, arXiv preprint arXiv: 2305.06212

    MATH  Google Scholar 

  97. Feyisetan O, Balle B, Drake T, Diethe T. Privacy- and utility-preserving textual analysis via calibrated multivariate perturbations. In: Proceedings of the 13th International Conference on Web Search and Data Mining. 2020, 178–186

    Chapter  Google Scholar 

  98. Zhang Z, Zhang X, Xie W, Lu Y. Responsible task automation: empowering large language models as responsible task Automators. 2023, arXiv preprint arXiv: 2306.01242

    MATH  Google Scholar 

  99. Ribeiro B, Rolla V, Santos R. INCOGNITUS: a toolbox for automated clinical notes anonymization. In: Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations. 2023, 187–194

    MATH  Google Scholar 

  100. Chen Y, Li T, Liu H, Yu Y. Hide and seek (HaS): a lightweight framework for prompt privacy protection. 2023, arXiv preprint arXiv: 2309.03057

    MATH  Google Scholar 

  101. Kan Z, Qiao L, Yu H, Peng L, Gao Y, Li D. Protecting user privacy in remote conversational systems: a privacy-preserving framework based on text sanitization. 2023, arXiv preprint arXiv: 2306.08223

    Google Scholar 

  102. Goyal S, Choudhury A R, Raje S, Chakaravarthy V, Sabharwal Y, Verma A. PoWER-BERT: accelerating BERT inference via progressive word-vector elimination. In: Proceedings of the 37th International Conference on Machine Learning. 2020, 346

    MATH  Google Scholar 

  103. Modarressi A, Mohebbi H, Pilehvar M T. AdapLeR: speeding up inference by adaptive length reduction. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2022, 1–15

    MATH  Google Scholar 

  104. Zhou X, Lu J, Gui T, Ma R, Fei Z, Wang Y, Ding Y, Cheung Y, Zhang Q, Huang X J. TextFusion: privacy-preserving pre-trained model inference via token fusion. In: Proceedings of 2022 Conference on Empirical Methods in Natural Language Processing. 2022, 8360–8371

    Chapter  MATH  Google Scholar 

  105. Beckerich M, Plein L, Coronado S. RatGPT: Turning online LLMs into proxies for malware attacks. 2023, arXiv preprint arXiv: 2308.09183

    Google Scholar 

  106. Li Y, Wei F, Zhao J, Zhang C, Zhang H. Rain: your language models can align themselves without finetuning. 2023, arXiv preprint arXiv: 2309.07124

    MATH  Google Scholar 

  107. Pisano M, Ly P, Sanders A, Yao B, Wang D, Strzalkowski T, Si M. Bergeron: combating adversarial attacks through a conscience-based alignment framework. 2023, arXiv preprint arXiv: 2312.00029

    Google Scholar 

  108. Cao B, Cao Y, Lin L, Chen J. Defending against alignment-breaking attacks via robustly aligned LLM. In: Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024, 10542–10560

    Chapter  MATH  Google Scholar 

  109. Inan H, Upasani K, Chi J, Rungta R, Iyer K, Mao Y, Tontchev M, Hu Q, Fuller B, Testuggine D, Testuggine M. Llama guard: LLM-based input-output safeguard for human-AI conversations. 2023, arXiv preprint arXiv: 2312.06674

    Google Scholar 

  110. Meta. Llm-guard. See llm-guard.com website, 2024

    MATH  Google Scholar 

  111. Microsoft. Presidio analyzer. See pypi.org/project/presidio-analyzer/website, 2024

    Google Scholar 

  112. Xu Z, Liu Y, Deng G, Li Y, Picek S. LLM jailbreak attack versus defense techniques–a comprehensive study. 2024, arXiv preprint arXiv: 2402.13457

    Google Scholar 

  113. Yang X, Chen K, Zhang W, Liu C, Qi Y, Zhang J, Fang H, Yu N. Watermarking text generated by black-box language models. 2023, arXiv preprint arXiv: 2305.08883

    MATH  Google Scholar 

  114. Tu S, Sun Y, Bai Y, Yu J, Hou L, Li J. WaterBench: towards holistic evaluation of watermarks for large language models. In: Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024, 1517–1542

    Chapter  MATH  Google Scholar 

  115. Singh K, Zou J. New evaluation metrics capture quality degradation due to LLM watermarking. 2023, arXiv preprint arXiv: 2312.02382

    MATH  Google Scholar 

  116. Li Y, Li Q, Cui L, Bi W, Wang Z, Wang L, Yang L, Shi S, Zhang Y. MAGE: machine-generated text detection in the wild. 2023, arXiv preprint arXiv: 2305.13242

    MATH  Google Scholar 

  117. Antoun W, Mouilleron V, Sagot B, Seddah D. Towards a robust detection of language model generated text: is ChatGPT that easy to detect? 2023, arXiv preprint arXiv: 2306.05871

    MATH  Google Scholar 

  118. Chen Y, Kang H, Zhai V, Li L, Singh R, Ramakrishnan B. GPT-sentinel: distinguishing human and ChatGPT generated content. 2023, arXiv preprint arXiv: 2305.07969

    Google Scholar 

  119. Sarvazyan A M, González J Á, Rosso P, Franco-Salvador M. Supervised machine-generated text detectors: family and scale matters. In: Proceedings of the 14th International Conference of the CLEF Association on Experimental IR Meets Multilinguality, Multimodality, and Interaction. 2023, 121–132

    Chapter  Google Scholar 

  120. Bhattacharjee A, Kumarage T, Moraffah R, Liu H. ConDA: contrastive domain adaptation for AI-generated text detection. In: Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers). 2023, 598–610

    Google Scholar 

  121. Liu Y, Zhang Z, Zhang W, Yue S, Zhao X, Cheng X, Zhang Y, Hu H. ArguGPT: evaluating, understanding and identifying argumentative essays generated by GPT models. 2023, arXiv preprint arXiv: 2304.07666

    MATH  Google Scholar 

  122. Bhattacharjee A, Liu H. Fighting fire with fire: can ChatGPT detect AI-generated text?. ACM SIGKDD Explorations Newsletter, 2023, 25(2): 14–21

    Article  MATH  Google Scholar 

  123. Koike R, Kaneko M, Okazaki N. OUTFOX: LLM-generated essay detection through in-context learning with adversarially generated examples. In: Proceedings of the 38th AAAI Conference on Artificial Intelligence. 2024, 21258–21266

    MATH  Google Scholar 

  124. Yu X, Qi Y, Chen K, Chen G, Yang X, Zhu P, Zhang W, Yu N. GPT paternity test: GPT generated text detection with GPT genetic inheritance. 2023, arXiv preprint arXiv: 2305.12519

    MATH  Google Scholar 

  125. Qiu W, Lie D, Austin L. Calpric: inclusive and fine-grain labeling of privacy policies with crowdsourcing and active learning. In: Proceedings of the 32nd USENIX Conference on Security Symposium. 2023, 60

    MATH  Google Scholar 

  126. Cui H, Trimananda R, Markopoulou A, Jordan S. POLIGRAPH: automated privacy policy analysis using knowledge graphs. In: Proceedings of the 32nd USENIX Conference on Security Symposium. 2023, 59

    Google Scholar 

  127. Chen C, Feng X, Li Y, Lyu L, Zhou J, Zheng X, Yin J. Integration of large language models and federated learning. 2023, arXiv preprint arXiv: 2307.08925

    MATH  Google Scholar 

  128. Kuang W, Qian B, Li Z, Chen D, Gao D, Pan X, Xie Y, Li Y, Ding B, Zhou J. FederatedScope-LLM: a comprehensive package for fine-tuning large language models in federated learning. In: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2024, 5260–5271

    Chapter  MATH  Google Scholar 

  129. Gupta S, Huang Y, Zhong Z, Gao T, Li K, Chen D. Recovering private text in federated learning of language models. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. 2022, 8130–8143

    MATH  Google Scholar 

  130. Xiao G, Lin J, Han S. Offsite-tuning: transfer learning without full model. 2023, arXiv preprint arXiv: 2302.04870

    MATH  Google Scholar 

  131. Fan T, Kang Y, Ma G, Chen W, Wei W, Fan L, Yang Q. Fate-LLM: a industrial grade federated learning framework for large language models. 2023, arXiv preprint arXiv: 2310.10049

    MATH  Google Scholar 

  132. Gong Y. Multilevel large language models for everyone. 2023, arXiv preprint arXiv: 2307.13221

    MATH  Google Scholar 

  133. Xi Z, Chen W, Guo X, He W, Ding Y, et al. The rise and potential of large language model based agents: a survey. 2023, arXiv preprint arXiv: 2309.07864

    MATH  Google Scholar 

  134. Wu Q, Bansal G, Zhang J, Wu Y, Zhang S, Zhu E, Li B, Jiang L, Zhang X, Wang C. AutoGen: enabling next-gen LLM applications via multi-agent conversation. 2023, arXiv preprint arXiv: 2308.08155

    MATH  Google Scholar 

  135. Zhang H, Du W, Shan J, Zhou Q, Du Y, Tenenbaum J B, Shu T, Gan C. Building cooperative embodied agents modularly with large language models. In: Proceedings of the 12th International Conference on Learning Representations. 2024

    MATH  Google Scholar 

  136. Liu X, Lai H, Yu H, Xu Y, Zeng A, Du Z, Zhang P, Dong Y, Tang J. WebGLM: towards an efficient web-enhanced question answering system with human preferences. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2023, 4549–4560

    Chapter  MATH  Google Scholar 

  137. Zeng S, Zhang J, He P, Liu Y, Xing Y, Xu H, Ren J, Chang Y, Wang S, Yin D, Tang J. The good and the bad: Exploring privacy issues in retrieval-augmented generation (RAG). In: Proceedings of the Findings of the Association for Computational Linguistics: ACL 2024. 2024, 4505–4524

    Chapter  Google Scholar 

  138. Chen Y, Mendes E, Das S, Xu W, Ritter A. Can language models be instructed to protect personal information? 2023, arXiv preprint arXiv: 2310.02224

    Google Scholar 

  139. Niu L, Mirza S, Maradni Z, Pöpper C. CodexLeaks: privacy leaks from code generation language models in GitHub copilot. In: Proceedings of the 32nd USENIX Conference on Security Symposium. 2023, 120

    MATH  Google Scholar 

  140. He X, Zannettou S, Shen Y, Zhang Y. You only prompt once: on the capabilities of prompt learning on large language models to tackle toxic content. In: Proceedings of 2024 IEEE Symposium on Security and Privacy (SP). 2024, 770–787

    Chapter  MATH  Google Scholar 

  141. Samson L, Barazani N, Ghebreab S, Asano Y M. Privacy-aware visual language models. 2024, arXiv preprint arXiv: 2405.17423

    Google Scholar 

  142. Caldarella S, Mancini M, Ricci E, Aljundi R. The phantom menace: unmasking privacy leakages in vision-language models. 2024, arXiv preprint arXiv: 2408.01228

    Google Scholar 

  143. Bengio Y, Hu E J. Scaling in the service of reasoning & model-based ML. See yoshuabengio.org/2023/03/21/scaling-in-the-service-of-reasoning-model-based-ml/website, 2023

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2021YFC3300600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawei Ye.

Ethics declarations

Competing interests The authors declare that they have no competing interests or financial conflicts to disclose.

Additional information

Hongyi LI received the BE degree from Tianjin University, China in 2022. She is currently working toward the PhD degree with the School of Computer Science, Fudan University, China. Her current research interests include financial technology security and data privacy.

Jiawei YE is currently a faculty member with the School of Computer Science at Fudan University and a senior engineer. His primary research interests include network and information security, sensitive information protection.

Jie WU is currently a professor in the School of Computer Science, Fudan University, China. His main research interests include network multimedia and information security.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Ye, J. & Wu, J. Privacy dilemmas and opportunities in large language models: a brief review. Front. Comput. Sci. 19, 1910356 (2025). https://doi.org/10.1007/s11704-024-40583-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11704-024-40583-8

Keywords