Abstract
Low-Rank Adaptation (LoRA), which updates the dense neural network layers with pluggable low-rank matrices, is one of the best performed parameter efficient fine-tuning paradigms. Furthermore, it has significant advantages in cross-task generalization and privacy-preserving. Hence, LoRA has gained much attention recently, and the number of related literature demonstrates exponential growth. It is necessary to conduct a comprehensive overview of the current progress on LoRA. This survey categorizes and reviews the progress from the perspectives of (1) downstream adaptation improving variants that improve LoRA’s performance on downstream tasks; (2) cross-task generalization methods that mix multiple LoRA plugins to achieve cross-task generalization; (3) efficiency-improving methods that boost the computation-efficiency of LoRA; (4) data privacy-preserving methods that use LoRA in federated learning; (5) application. Besides, this survey also discusses the future directions in this field.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Devlin J, Chang M W, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT. 2019, 4171–4186
Chowdhery A, Narang S, Devlin J, Bosma M, Mishra G, Roberts A, Barham P, Chung H W, Sutton C, Gehrmann S, Schuh P, Shi K, Tsvyashchenko S, Maynez J, Rao A, Barnes P, Tay Y, Shazeer N, Prabhakaran V, Reif E, Du N, Hutchinson B, Pope R, Bradbury J, Austin J, Isard M, Gur-Ari G, Yin P, Duke T, Levskaya A, Ghemawat S, Dev S, Michalewski H, Garcia X, Misra V, Robinson K, Fedus L, Zhou D, Ippolito D, Luan D, Lim H, Zoph B, Spiridonov A, Sepassi R, Dohan D, Agrawal S, Omernick M, Dai A M, Pillai T S, Pellat M, Lewkowycz A, Moreira E, Child R, Polozov O, Lee K, Zhou Z, Wang X, Saeta B, Diaz M, Firat O, Catasta M, Wei J, Meier-Hellstern K, Eck D, Dean J, Petrov S, Fiedel N. PaLM: scaling language modeling with pathways. The Journal of Machine Learning Research, 2023, 24(1): 240
Chen Y, Qian S, Tang H, Lai X, Liu Z, Han S, Jia J. LongLoRA: efficient fine-tuning of long-context large language models. In: Proceedings of the 12th International Conference on Learning Representations. 2024
Pan R, Liu X, Diao S, Pi R, Zhang J, Han C, Zhang T. LISA: layerwise importance sampling for memory-efficient large language model fine-tuning. 2024, arXiv preprint arXiv: 2403.17919
Ding N, Qin Y, Yang G, Wei F, Yang Z, Su Y, Hu S, Chen Y, Chan C M, Chen W, Yi J, Zhao W, Wang X, Liu Z, Zheng H T, Chen J, Liu Y, Tang J, Li J, Sun M. Parameter-efficient fine-tuning of large-scale pre-trained language models. Nature Machine Intelligence, 2023, 5(3): 220–235
Houlsby N, Giurgiu A, Jastrzebski S, Morrone B, de Laroussilhe Q, Gesmundo A, Attariyan M, Gelly S. Parameter-efficient transfer learning for NLP. In: Proceedings of the 36th International Conference on Machine Learning. 2019, 2790–2799
Lester B, Al-Rfou R, Constant N. The power of scale for parameter-efficient prompt tuning. In: Proceedings of 2021 Conference on Empirical Methods in Natural Language Processing. 2021, 3045–3059
Zaken E B, Goldberg Y, Ravfogel S. BitFit: simple parameter-efficient fine-tuning for transformer-based masked language-models. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). 2022, 1–9
Hu E J, Shen Y, Wallis P, Allen-Zhu Z, Li Y, Wang S, Wang L, Chen W. LoRA: low-rank adaptation of large language models. In: Proceedings of the 10th International Conference on Learning Representations. 2022
Zhao W X, Zhou K, Li J, Tang T, Wang X, Hou Y, Min Y, Zhang B, Zhang J, Dong Z, Du Y, Yang C, Chen Y, Chen Z, Jiang J, Ren R, Li Y, Tang X, Liu Z, Liu P, Nie J Y, Wen J R. A survey of large language models. 2023, arXiv preprint arXiv: 2303.18223
Han Z, Gao C, Liu J, Zhang J, Zhang S Q. Parameter-efficient fine-tuning for large models: a comprehensive survey. 2024, arXiv preprint arXiv: 2403.14608
Malladi S, Wettig A, Yu D, Chen D, Arora S. A kernel-based view of language model fine-tuning. In: Proceedings of the 40th International Conference on Machine Learning. 2023, 23610–23641
Koubbi H, Boussard M, Hernandez L. The impact of LoRA on the emergence of clusters in transformers. 2024, arXiv preprint arXiv: 2402.15415
Jang U, Lee J D, Ryu E K. LoRA training in the NTK regime has no spurious local minima. 2024, arXiv preprint arXiv: 2402.11867
Zhu J, Greenewald K, Nadjahi K, de Ocáriz Borde H S, Gabrielsson R B, Choshen L, Ghassemi M, Yurochkin M, Solomon J. Asymmetry in low-rank adapters of foundation models. 2024, arXiv preprint arXiv: 2402.16842
Zeng Y, Lee K. The expressive power of low-rank adaptation. In: Proceedings of the 12th International Conference on Learning Representations. 2024
Lialin V, Muckatira S, Shivagunde N, Rumshisky A. ReLoRA: highrank training through low-rank updates. In: Proceedings of the 12th International Conference on Learning Representations. 2024
Jiang T, Huang S, Luo S, Zhang Z, Huang H, Wei F, Deng W, Sun F, Zhang Q, Wang D, Zhuang F. MoRA: high-rank updating for parameter-efficient fine-tuning. 2024, arXiv preprint arXiv: 2405.12130
Huh M, Cheung B, Bernstein J, Isola P, Agrawal P. Training neural networks from scratch with parallel low-rank adapters. 2024, arXiv preprint arXiv: 2402.16828
Liang Y S, Li W J. InfLoRA: interference-free low-rank adaptation for continual learning. 2024, arXiv preprint arXiv: 2404.00228
Zhao H, Ni B, Wang H, Fan J, Zhu F, Wang Y, Chen Y, Meng G, Zhang Z. Continual forgetting for pre-trained vision models. 2024, arXiv preprint arXiv: 2403.11530
Ren W, Li X, Wang L, Zhao T, Qin W. Analyzing and reducing catastrophic forgetting in parameter efficient tuning. 2024, arXiv preprint arXiv: 2402.18865
Zhang H. SinkLoRA: enhanced efficiency and chat capabilities for long-context large language models. 2024, arXiv preprint arXiv: 2406.05678
Xia W, Qin C, Hazan E. Chain of LoRA: efficient fine-tuning of language models via residual learning. 2024, arXiv preprint arXiv: 2401.04151
Ren P, Shi C, Wu S, Zhang M, Ren Z, de Rijke M, Chen Z, Pei J. MELoRA: mini-ensemble low-rank adapters for parameter-efficient fine-tuning. 2024, arXiv preprint arXiv: 2402.17263
Hao Y, Cao Y, Mou L. Flora: low-rank adapters are secretly gradient compressors. 2024, arXiv preprint arXiv: 2402.03293
Zi B, Qi X, Wang L, Wang J, Wong K F, Zhang L. Delta-LoRA: fine-tuning high-rank parameters with the delta of low-rank matrices. 2023, arXiv preprint arXiv: 2309.02411
Zhang Q, Chen M, Bukharin A, He P, Cheng Y, Chen W, Zhao T. Adaptive budget allocation for parameter-efficient fine-tuning. In: Proceedings of the 11th International Conference on Learning Representations. 2023
Hu Y, Xie Y, Wang T, Chen M, Pan Z. Structure-aware low-rank adaptation for parameter-efficient fine-tuning. Mathematics, 2023, 11(20): 4317
Zhang F, Li L, Chen J, Jiang Z, Wang B, Qian Y. IncreLoRA: incremental parameter allocation method for parameter-efficient fine-tuning. 2023, arXiv preprint arXiv: 2308.12043
Mao Y, Huang K, Guan C, Bao G, Mo F, Xu J. DoRA: enhancing parameter-efficient fine-tuning with dynamic rank distribution. 2024, arXiv preprint arXiv: 2405.17357
Zhang R, Qiang R, Somayajula S A, Xie P. AutoLoRA: automatically tuning matrix ranks in low-rank adaptation based on meta learning. 2024, arXiv preprint arXiv: 2403.09113
Ding N, Lv X, Wang Q, Chen Y, Zhou B, Liu Z, Sun M. Sparse low-rank adaptation of pre-trained language models. In: Proceedings of 2023 Conference on Empirical Methods in Natural Language Processing. 2023, 4133–4145
Liu Z, Lyn J, Zhu W, Tian X, Graham Y. ALoRA: allocating low-rank adaptation for fine-tuning large language models. 2024, arXiv preprint arXiv: 2403.16187
Valipour M, Rezagholizadeh M, Kobyzev I, Ghodsi A. DyLoRA: parameter-efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. In: Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics. 2023, 3274–3287
Hayou S, Ghosh N, Yu B. The impact of initialization on LoRA finetuning dynamics. 2024, arXiv preprint arXiv: 2406.08447
Meng F, Wang Z, Zhang M. PiSSA: principal singular values and singular vectors adaptation of large language models. 2024, arXiv preprint arXiv: 2404.02948
Wang H, Xiao Z, Li Y, Wang S, Chen G, Chen Y. MiLoRA: harnessing minor singular components for parameter-efficient LLM finetuning. 2024, arXiv preprint arXiv: 2406.09044
Zhang F, Pilanci M. Riemannian preconditioned LoRA for fine-tuning foundation models. 2024, arXiv preprint arXiv: 2402.02347
Hayou S, Ghosh N, Yu B. LoRA+: efficient low rank adaptation of large models. 2024, arXiv preprint arXiv: 2402.12354
Shi S, Huang S, Song M, Li Z, Zhang Z, Huang H, Wei F, Deng W, Sun F, Zhang Q. ResLoRA: identity residual mapping in low-rank adaption. 2024, arXiv preprint arXiv: 2402.18039
Wen Z, Zhang J, Fang Y. SIBO: a simple booster for parameter-efficient fine-tuning. 2024, arXiv preprint arXiv: 2402.11896
Jin F, Liu Y, Tan Y. Derivative-free optimization for low-rank adaptation in large language models. 2024, arXiv preprint arXiv: 2403.01754
Liu S Y, Wang C Y, Yin H, Molchanov P, Wang Y C F, Cheng K T, Chen M H. DoRA: weight-decomposed low-rank adaptation. 2024, arXiv preprint arXiv: 2402.09353
Qiang R, Zhang R, Xie P. BiLoRA: a bi-level optimization framework for overfitting-resilient low-rank adaptation of large pre-trained models. 2024, arXiv preprint arXiv: 2403.13037
Lin Y, Ma X, Chu X, Jin Y, Yang Z, Wang Y, Mei H. LoRA dropout as a sparsity regularizer for overfitting control. 2024, arXiv preprint arXiv: 2404.09610
Wang S, Chen L, Jiang J, Xue B, Kong L, Wu C. LoRA meets dropout under a unified framework. 2024, arXiv preprint arXiv: 2403.00812
Yang A X, Robeyns M, Wang X, Aitchison L. Bayesian low-rank adaptation for large language models. In: Proceedings of the 12th International Conference on Learning Representations. 2024
Qi Z, Tan X, Shi S, Qu C, Xu Y, Qi Y. PILLOW: enhancing efficient instruction fine-tuning via prompt matching. In: Proceedings of 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track. 2023, 471–482
Zhang L, Wu J, Zhou D, Xu G. STAR: constraint LoRA with dynamic active learning for data-efficient fine-tuning of large language models. 2024, arXiv preprint arXiv: 2403.01165
Wang X, Aitchison L, Rudolph M. LoRA ensembles for large language model fine-tuning. 2023, arXiv preprint arXiv: 2310.00035
Zhao Z, Gan L, Wang G, Zhou W, Yang H, Kuang K, Wu F. LoraRetriever: input-aware LoRA retrieval and composition for mixed tasks in the wild. 2024, arXiv preprint arXiv: 2402.09997
Smith J S, Cascante-Bonilla P, Arbelle A, Kim D, Panda R, Cox D, Yang D, Kira Z, Feris R, Karlinsky L. ConStruct-VL: data-free continual structured VL concepts learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, 14994–15004
Sun Y, Li M, Cao Y, Wang K, Wang W, Zeng X, Zhao R. To be or not to be? An exploration of continuously controllable prompt engineering. 2023, arXiv preprint arXiv: 2311.09773
Zhang J, Chen S, Liu J, He J. Composing parameter-efficient modules with arithmetic operations. 2023, arXiv preprint arXiv: 2306.14870
Chitale R, Vaidya A, Kane A, Ghotkar A. Task arithmetic with LoRA for continual learning. 2023, arXiv preprint arXiv: 2311.02428
Belofsky J. Token-Level Adaptation of LoRA adapters for downstream task generalization. In: Proceedings of the 6th Artificial Intelligence and Cloud Computing Conference. 2023, 168–172
Jiang W, Lin B, Shi H, Zhang Y, Li Z, Kwok J T. Effective and parameter-efficient reusing fine-tuned models. 2023, arXiv preprint arXiv: 2310.01886
Asadi N, Beitollahi M, Khalil Y, Li Y, Zhang G, Chen X. Does combining parameter-efficient modules improve few-shot transfer accuracy? 2024, arXiv preprint arXiv: 2402.15414
Huang C, Liu Q, Lin B Y, Pang T, Du C, Lin M. LoraHub: efficient cross-task generalization via dynamic LoRA composition. 2023, arXiv preprint arXiv: 2307.13269
Yadav P, Choshen L, Raffel C, Bansal M. ComPEFT: compression for communicating parameter efficient updates via sparsification and quantization. 2023, arXiv preprint arXiv: 2311.13171
Tang A, Shen L, Luo Y, Zhan Y, Hu H, Du B, Chen Y, Tao D. Parameter-efficient multi-task model fusion with partial linearization. In: Proceedings of the 12th International Conference on Learning Representations. 2024
Shen Y, Xu Z, Wang Q, Cheng Y, Yin W, Huang L. Multimodal instruction tuning with conditional mixture of LoRA. In: Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024, 637–648
Buehler E L, Buehler M J. X-LoRA: mixture of low-rank adapter experts, a flexible framework for large language models with applications in protein mechanics and molecular design. APL Machine Learning, 2024, 2(2): 026119
Yang S, Ali M A, Wang C L, Hu L, Wang D. MoRAL: MoE augmented LoRA for LLMs’ lifelong learning. 2024, arXiv preprint arXiv: 2402.11260
Dou S, Zhou E, Liu Y, Gao S, Zhao J, Shen W, Zhou Y, Xi Z, Wang X, Fan X, Pu S, Zhu J, Zheng R, Gui T, Zhang Q, Huang X. LoRAMoE: alleviate world knowledge forgetting in large language models via MoE-style plugin. 2023, arXiv preprint arXiv: 2312.09979
Gou Y, Liu Z, Chen K, Hong L, Xu H, Li A, Yeung D Y, Kwok J T, Zhang Y. Mixture of cluster-conditional LoRA experts for vision-language instruction tuning. 2023, arXiv preprint arXiv: 2312.12379
Liu Q, Wu X, Zhao X, Zhu Y, Xu D, Tian F, Zheng Y. When MOE meets LLMs: parameter efficient fine-tuning for multi-task medical applications. In: Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2024, 1104–1114
Feng W, Hao C, Zhang Y, Han Y, Wang H. Mixture-of-LoRAs: an efficient multitask tuning method for large language models. In: Proceedings of 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation. 2024, 11371–11380
Wang Y, Lin Y, Zeng X, Zhang G. MultiLoRA: democratizing LoRA for better multi-task learning. 2023, arXiv preprint arXiv: 2311.11501
Yang Y, Jiang P T, Hou Q, Zhang H, Chen J, Li B. Multi-task dense prediction via mixture of low-rank experts. 2024, arXiv preprint arXiv: 2403.17749
Agiza A, Neseem M, Reda S. MTLoRA: low-rank adaptation approach for efficient multi-task learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2024, 16196–16205
Gao C, Chen K, Rao J, Sun B, Liu R, Peng D, Zhang Y, Guo X, Yang J, Subrahmanian V S. Higher layers need more LoRA experts. 2024, rXiv preprint arXiv: 2402.08562
Chen S, Jie Z, Ma L. LLaVA-MoLE: sparse mixture of LoRA experts for mitigating data conflicts in instruction finetuning MLLMs. 2024, arXiv preprint arXiv: 2401.16160
Zhu Y, Wichers N, Lin C C, Wang X, Chen T, Shu L, Lu H, Liu C, Luo L, Chen J, Meng L. SiRA: sparse mixture of low rank adaptation. 2023, arXiv preprint arXiv: 2311.09179
Chen Z, Wang Z, Wang Z, Liu H, Yin Z, Liu S, Sheng L, Ouyang W, Qiao Y, Shao J. Octavius: mitigating task interference in MLLMs via MoE. 2023, arXiv preprint arXiv: 2311.02684
Wen Y, Chaudhuri S. Batched low-rank adaptation of foundation models. In: Proceedings of the Twelfth International Conference on Learning Representations. 2024
Wu T, Wang J, Zhao Z, Wong N. Mixture-of-Subspaces in Low-Rank Adaptation. 2024, arXiv preprint arXiv:2406.11909
Wu Y, Xiang Y, Huo S, Gong Y, Liang P. LoRA-SP: streamlined partial parameter adaptation for resource efficient fine-tuning of large language models. In: Proceedings of the 3rd International Conference on Algorithms, Microchips, and Network Applications. 2024, 131711Z
Zhang L, Zhang L, Shi S, Chu X, Li B. LoRA-FA: memory-efficient low-rank adaptation for large language models fine-tuning. 2023, arXiv preprint arXiv: 2308.03303
Liu Z, Kundu S, Li A, Wan J, Jiang L, Beerel P A. AFLoRA: adaptive freezing of low rank adaptation in parameter efficient fine-tuning of large models. 2024, arXiv preprint arXiv: 2403.13269
Woo S, Park B, Kim B, Jo M, Kwon S, Jeon D, Lee D. DropBP: accelerating fine-tuning of large language models by dropping backward propagation. 2024, arXiv preprint arXiv: 2402.17812
Bałazy K, Banaei M, Aberer K, Tabor J. LoRA-XS: low-rank adaptation with extremely small number of parameters. 2024, arXiv preprint arXiv: 2405.17604
Zhou H, Lu X, Xu W, Zhu C, Zhao T, Yang M. LoRA-drop: efficient LoRA parameter pruning based on output evaluation. 2024, arXiv preprint arXiv: 2402.07721
Zhang M, Chen H, Shen C, Yang Z, Ou L, Yu X, Zhuang B. LoRAPrune: structured pruning meets low-rank parameter-efficient fine-tuning. In: Proceedings of the Findings of the Association for Computational Linguistics. 2024, 3013–3026
Chen T, Ding T, Yadav B, Zharkov I, Liang L. LoRAShear: efficient large language model structured pruning and knowledge recovery. 2023, arXiv preprint arXiv: 2310.18356
Zhu Y, Yang X, Wu Y, Zhang W. Parameter-efficient fine-tuning with layer pruning on free-text sequence-to-sequence modeling. 2023, arXiv preprint arXiv: 2305.08285
Kopiczko D J, Blankevoort T, Asano Y M. VeRA: vector-based random matrix adaptation. In: Proceedings of the 12th International Conference on Learning Representations. 2024
Li Y, Han S, Ji S. VB-LoRA: extreme parameter efficient fine-tuning with vector banks. 2024, arXiv preprint arXiv: 2405.15179
Gao Z, Wang Q, Chen A, Liu Z, Wu B, Chen L, Li J. Parameter-efficient fine-tuning with discrete Fourier transform. 2024, arXiv preprint arXiv: 2405.03003
Dettmers T, Pagnoni A, Holtzman A, Zettlemoyer L. QLORA: efficient finetuning of quantized LLMs. In: Proceedings of the 37th International Conference on Neural Information Processing Systems.
Xu Y, Xie L, Gu X, Chen X, Chang H, Zhang H, Chen Z, Zhang X, Tian Q. QA-LoRA: quantization-aware low-rank adaptation of large language models. In: Proceedings of the 12th International Conference on Learning Representations. 2024
Li Y, Yu Y, Liang C, He P, Karampatziakis N, Chen W, Zhao T. LoftQ: LoRA-fine-tuning-aware quantization for large language models. In: Proceedings of the 12th International Conference on Learning Representations. 2024
Liao B, Herold C, Khadivi S, Monz C. ApiQ: finetuning of 2-bit quantized large language model. 2024, arXiv preprint arXiv: 2402.05147
Jeon H, Kim Y, Kim J J. L4Q: parameter efficient quantization-aware training on large language models via LoRA-wise LSQ. 2024, arXiv preprint arXiv: 2402.04902
Ye Z, Li D, Tian J, Lan T, Zuo J, Duan L, Lu H, Jiang Y, Sha J, Zhang K, Tang M. ASPEN: high-throughput LoRA fine-tuning of large language models with a single GPU. 2023, arXiv preprint arXiv: 2312.02515
Chen L, Ye Z, Wu Y, Zhuo D, Ceze L, Krishnamurthy A. Punica: multi-tenant LoRA serving. In: Proceedings of the Seventh Annual Conference on Machine Learning and Systems. 2024, 1–13
Sheng Y, Cao S, Li D, Hooper C, Lee N, Yang S, Chou C, Zhu B, Zheng L, Keutzer K, Gonzalez J E, Stoica I. S-LoRA: serving thousands of concurrent LoRA adapters. 2023, arXiv preprint arXiv: 2311.03285
Li S, Lu H, Wu T, Yu M, Weng Q, Chen X, Shan Y, Yuan B, Wang W. CaraServe: CPU-assisted and rank-aware LoRA serving for generative LLM inference. 2024, arXiv preprint arXiv: 2401.11240
Babakniya S, Elkordy A R, Ezzeldin Y H, Liu Q, Song K B, El-Khamy M, Avestimehr S. SLoRA: federated parameter efficient fine-tuning of language models. 2023, arXiv preprint arXiv: 2308.06522
Yan Y, Tang S, Shi Z, Yang Q. FeDeRA: efficient fine-tuning of language models in federated learning leveraging weight decomposition. 2024, arXiv preprint arXiv: 2404.18848
Sun Y, Li Z, Li Y, Ding B. Improving LoRA in privacy-preserving federated learning. In: Proceedings of the 12th International Conference on Learning Representations. 2024
Wu P, Li K, Wang T, Wang F. FedMS: federated learning with mixture of sparsely activated foundations models. 2023, arXiv preprint arXiv: 2312.15926
Bai J, Chen D, Qian B, Yao L, Li Y. Federated fine-tuning of large language models under heterogeneous language tasks and client resources. 2024, arXiv preprint arXiv: 2402.11505
Cho Y J, Liu L, Xu Z, Fahrezi A, Barnes M, Joshi G. Heterogeneous LoRA for federated fine-tuning of on-device foundation models. In: Proceedings of the International Workshop on Federated Learning in the Age of Foundation Models in Conjunction with NeurIPS. 2023
Yi L, Yu H, Wang G, Liu X, Li X. pFedLoRA: model-heterogeneous personalized federated learning with LoRA tuning. 2023, arXiv preprint arXiv: 2310.13283
Huang W, Wang Y, Cheng A, Zhou A, Yu C, Wang L. A fast, performant, secure distributed training framework for large language model. 2024, arXiv preprint arXiv: 2401.09796
Wang Y, Lin Y, Zeng X, Zhang G. PrivateLoRA for efficient privacy preserving LLM. 2023, arXiv preprint arXiv: 2311.14030
Zhang Y, Wang M, Wu Y, Tiwari P, Li Q, Wang B, Qin J. DialogueLLM: context and emotion knowledge-tuned large language models for emotion recognition in conversations. 2024, arXiv preprint arXiv: 2310.11374
Li Z, Li X, Liu Y, Xie H, Li J, Wang F L, Li Q, Zhong X. Label supervised LLaMA finetuning. 2023, arXiv preprint arXiv: 2310.01208
Bornheim T, Grieger N, Blaneck P G, Bialonski S. Speaker attribution in German parliamentary debates with QLoRA-adapted large language models. 2024, arXiv preprint arXiv: 2309.09902
Xue L, Zhang D, Dong Y, Tang J. AutoRE: document-level relation extraction with large language models. 2024, arXiv preprint arXiv: 2403.14888
Alves D M, Guerreiro N M, Alves J, Pombal J, Rei R, de Souza J G C, Colombo P, Martins A F T. Steering large language models for machine translation with finetuning and in-context learning. In: Proceedings of the Findings of the Association for Computational Linguistics. 2023, 11127–11148
Zheng J, Hong H, Wang X, Su J, Liang Y, Wu S. Fine-tuning large language models for domain-specific machine translation. 2024, arXiv preprint arXiv: 2402.15061
Mujadia V, Urlana A, Bhaskar Y, Pavani P A, Shravya K, Krishnamurthy P, Sharma D M. Assessing translation capabilities of large language models involving English and Indian languages. 2023, arXiv preprint arXiv: 2311.09216
Zhang Y, Wang J, Yu L C, Xu D, Zhang X. Personalized LoRA for human-centered text understanding. In: Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence. 2024, 19588–19596
Liu Y, An C, Qiu X. Y-tuning: an efficient tuning paradigm for large-scale pre-trained models via label representation learning. Frontiers of Computer Science, 2024, 18(4): 184320
Liu S, Keung J, Yang Z, Liu F, Zhou Q, Liao Y. Delving into parameter-efficient fine-tuning in code change learning: an empirical study. In: Proceedings of the IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). 2024, 465–476
Guo Y, Gao X, Jiang B. An empirical study on JIT defect prediction based on BERT-style model. 2024, arXiv preprint arXiv: 2403.11158
Ayupov S, Chirkova N. Parameter-efficient finetuning of transformers for source code. 2022, arXiv preprint arXiv: 2212.05901
Silva A, Fang S, Monperrus M. RepairLLaMA: efficient representations and fine-tuned adapters for program repair. 2023, arXiv preprint arXiv: 2312.15698
Roberson R, Kaki G, Trivedi A. Analyzing the effectiveness of large language models on text-to-SQL synthesis. 2024, arXiv preprint arXiv: 2401.12379
Pan J, Sadé A, Kim J, Soriano E, Sole G, Flamant S. SteloCoder: a decoder-only LLM for multi-language to python code translation. 2023, arXiv preprint arXiv: 2310.15539
Sidahmed H, Phatale S, Hutcheson A, Lin Z, Chen Z, Yu Z, Jin J, Komarytsia R, Ahlheim C, Zhu Y, Chaudhary S, Li B, Ganesh S, Byrne B, Hoffmann J, Mansoor H, Li W, Rastogi A, Dixon L. PERL: parameter efficient reinforcement learning from human feedback. 2024, arXiv preprint arXiv: 2403.10704
Santacroce M, Lu Y, Yu H, Li Y, Shen Y. Efficient RLHF: reducing the memory usage of PPO. 2023, arXiv preprint arXiv: 2309.00754
Sun S, Gupta D, Iyyer M. Exploring the impact of low-rank adaptation on the performance, efficiency, and regularization of RLHF. 2023, arXiv preprint arXiv: 2309.09055
Quan S. DMoERM: recipes of mixture-of-experts for effective reward modeling. 2024, arXiv preprint arXiv: 2403.01197
Zhang S, Chen Z, Chen S, Shen Y, Sun Z, Gan C. Improving reinforcement learning from human feedback with efficient reward model ensemble. 2024, arXiv preprint arXiv: 2401.16635
Zhai Y, Zhang H, Lei Y, Yu Y, Xu K, Feng D, Ding B, Wang H. Uncertainty-penalized reinforcement learning from human feedback with diverse reward LoRA ensembles. 2023, arXiv preprint arXiv: 2401.00243
Yang A X, Robeyns M, Coste T, Shi Z, Wang J, Bou-Ammar H, Aitchison L. Bayesian reward models for LLM alignment. 2024, arXiv preprint arXiv: 2402.13210
Daxberger E, Kristiadi A, Immer A, Eschenhagen R, Bauer M, Hennig P. Laplace redux-effortless bayesian deep learning. Advances in Neural Information Processing Systems. 2021
Tran H, Yang Z, Yao Z, Yu H. BioInstruct: instruction tuning of large language models for biomedical natural language processing. 2023, arXiv preprint arXiv: 2310.19975
Gema A P, Minervini P, Daines L, Hope T, Alex B. Parameter-efficient fine-tuning of LLaMA for the clinical domain. 2023, arXiv preprint arXiv: 2307.03042
Toma A, Lawler P R, Ba J, Krishnan R G, Rubin B B, Wang B. Clinical camel: an open-source expert-level medical language model with dialogue-based knowledge encoding. 2023, arXiv preprint arXiv: 2305.12031
Suri K, Mishra P, Saha S, Singh A. Suryakiran at MEDIQA-Sum 2023: leveraging LoRA for clinical dialogue summarization. In: Proceedings of the Working Notes of the Conference and Labs of the Evaluation Forum. 2023, 1720–1735
Ji Y, Yu Z, Wang Y. Assertion detection large language model in-context learning LoRA fine-tuning. 2024, arXiv preprint arXiv: 2401.17602
Wang R, Duan Y, Lam C, Chen J, Xu J, Chen H, Liu X, Pang P C I, Tan T. IvyGPT: InteractiVe Chinese pathway language model in medical domain. In: Proceedings of the 3rd CAAI International Conference on Artificial Intelligence. 2024, 378–382
Bhatti A, Parmar S, Lee S. SM70: a large language model for medical devices. 2023, arXiv preprint arXiv: 2312.06974
Konstantinidis T, Iacovides G, Xu M, Constantinides T G, Mandic D. FinLlama: financial sentiment classification for algorithmic trading applications. 2024, arXiv preprint arXiv: 2403.12285
Pavlyshenko B M. Financial news analytics using fine-tuned llama 2 GPT model. 2023, arXiv preprint arXiv: 2308.13032
Liu X Y, Wang G, Yang H, Zha D. FinGPT: democratizing internetscale data for financial large language models. 2023, arXiv preprint arXiv: 2307.10485
Li J, Lei Y, Bian Y, Cheng D, Ding Z, Jiang C. RA-CFGPT: Chinese financial assistant with retrieval-augmented large language model. Frontiers of Computer Science, 2024, 18(5): 185350
Zhou X, Sun Z, Li G. DB-GPT: large language model meets database. Data Science and Engineering, 2024, 9(1): 102–111
Li S. DiffStyler: diffusion-based localized image style transfer. 2024, arXiv preprint arXiv: 2403.18461
Frenkel Y, Vinker Y, Shamir A, Cohen-Or D. Implicit style-content separation using B-LoRA. 2024, arXiv preprint arXiv: 2403.14572
Liu Y, Yu C, Shang L, He Y, Wu Z, Wang X, Xu C, Xie H, Wang W, Zhao Y, Zhu L, Cheng C, Chen W, Yao Y, Zhou W, Xu J, Wang Q, Chen Y, Xie X, Sun B. FaceChain: a playground for human-centric artificial intelligence generated content. 2023, arXiv preprint arXiv: 2308.14256
Liao Q, Xia G, Wang Z. Calliffusion: Chinese calligraphy generation and style transfer with diffusion modeling. 2023, arXiv preprint arXiv: 2305.19124
Shrestha S, Sripada V S S, Venkataramanan A. Style transfer to Calvin and Hobbes comics using stable diffusion. 2023, arXiv preprint arXiv: 2312.03993
Li L, Zeng H, Yang C, Jia H, Xu D. Block-wise LoRA: revisiting finegrained LoRA for effective personalization and stylization in text-to-image generation. 2024, arXiv preprint arXiv: 2403.07500
Kong Z, Zhang Y, Yang T, Wang T, Zhang K, Wu B, Chen G, Liu W, Luo W. OMG: occlusion-friendly personalized multi-concept generation in diffusion models. 2024, arXiv preprint arXiv: 2403.10983
Shi J, Hua H. Space narrative: generating images and 3D scenes of Chinese garden from text using deep learning. In: Proceedings of the xArch-Creativity in the Age of Digital Reproduction Symposium. 2024, 236–243
Jin Z, Song Z. Generating coherent comic with rich story using ChatGPT and stable diffusion. 2023, arXiv preprint arXiv: 2305.11067
Wang H, Xiang X, Fan Y, Xue J H. Customizing 360-degree panoramas through text-to-image diffusion models. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2024, 4921–4931
Guo J, Xu X, Pu Y, Ni Z, Wang C, Vasu M, Song S, Huang G, Shi H. Smooth diffusion: crafting smooth latent spaces in diffusion models. 2023, arXiv preprint arXiv: 2312.04410
Cheng J, Xie P, Xia X, Li J, Wu J, Ren Y, Li H, Xiao X, Zheng M, Fu L. ResAdapter: domain consistent resolution adapter for diffusion models. 2024, arXiv preprint arXiv: 2403.02084
Smith J S, Hsu Y C, Kira Z, Shen Y, Jin H. Continual diffusion with STAMINA: STack-and-mask INcremental adapters. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 1744–1754
Sun J, Fu D, Hu Y, Wang S, Rassin R, Juan D C, Alon D, Herrmann C, van Steenkiste S, Krishna R, Rashtchian C. Dreamsync: aligning text-to-image generation with image understanding feedback. In: Proceedings of the Synthetic Data for Computer Vision Workshop@CVPR 2024. 2023
Wang Z, Wang X, Xie L, Qi Z, Shan Y, Wang W, Luo P. StyleAdapter: a single-pass LoRA-free model for stylized image generation. 2023, arXiv preprint arXiv: 2309.01770
Gu Y, Wang X, Wu J Z, Shi Y, Chen Y, Fan Z, Xiao W, Zhao R, Chang S, Wu W, Ge Y, Shan Y, Shou M Z. Mix-of-show: decentralized low-rank adaptation for multi-concept customization of diffusion models. In: Proceedings of the 37th International Conference on Neural Information Processing Systems. 2023
Luo S, Tan Y, Patil S, Gu D, von Platen P, Passos A, Huang L, Li J, Zhao H. LCM-LoRA: a universal stable-diffusion acceleration module. 2023, arXiv preprint arXiv: 2311.05556
Golnari P A. LoRA-enhanced distillation on guided diffusion models. 2023, arXiv preprint arXiv: 2312.06899
Ren Y, Zhou Y, Yang J, Shi J, Liu D, Liu F, Kwon M, Shrivastava A. Customize-A-video: one-shot motion customization of text-to-video diffusion models. 2024, arXiv preprint arXiv: 2402.14780
Deng Y, Wang R, Zhang Y, Tai Y W, Tang C K. DragVideo: interactive drag-style video editing. 2023, arXiv preprint arXiv: 2312.02216
Yang S, Zhou Y, Liu Z, Loy C C. Rerender A video: zero-shot text-guided video-to-video translation. In: Proceedings of the SIGGRAPH Asia 2023 Conference Papers. 2023, 95
Khandelwal A. InFusion: inject and attention fusion for multi concept zero-shot text-based video editing. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. 2023, 3009–3018
Blattmann A, Dockhorn T, Kulal S, Mendelevitch D, Kilian M, Lorenz D, Levi Y, English Z, Voleti V, Letts A, Jampani V, Rombach R. Stable video diffusion: scaling latent video diffusion models to large datasets. 2023, arXiv preprint arXiv: 2311.15127
Guo Y, Yang C, Rao A, Liang Z, Wang Y, Qiao Y, Agrawala M, Lin D, Dai B. AnimateDiff: animate your personalized text-to-image diffusion models without specific tuning. In: Proceedings of the 12th International Conference on Learning Representations. 2024
Huang T, Zeng Y, Zhang Z, Xu W, Xu H, Xu S, Lau R W H, Zuo W. DreamControl: control-based text-to-3D generation with 3D self-prior. 2023, arXiv preprint arXiv: 2312.06439
Ma Y, Fan Y, Ji J, Wang H, Sun X, Jiang G, Shu A, Ji R. X-dreamer: creating high-quality 3D content by bridging the domain gap between text-to-2D and text-to-3D generation. 2023, arXiv preprint arXiv: 2312.00085
Yu K, Liu J, Feng M, Cui M, Xie X. Boosting3D: high-fidelity image-to-3D by boosting 2D diffusion prior to 3D prior with progressive learning. 2023, arXiv preprint arXiv: 2311.13617
Yoo S, Kim K, Kim V G, Sung M. As-plausible-as-possible: plausibility-aware mesh deformation using 2D diffusion priors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 4315–4324
Zhang Y, Xu Q, Zhang L. DragTex: generative point-based texture editing on 3D mesh. 2024, arXiv preprint arXiv: 2403.02217
Ding H, Gao J, Yuan Y, Wang Q. SamLP: a customized segment anything model for license plate detection. 2024, arXiv preprint arXiv: 2401.06374
Ye Z, Lovell L, Faramarzi A, Ninic J. SAM-based instance segmentation models for the automation of structural damage detection. 2024, arXiv preprint arXiv: 2401.15266
Na S, Guo Y, Jiang F, Ma H, Huang J. Segment any cell: a SAM-based auto-prompting fine-tuning framework for nuclei segmentation. 2024, arXiv preprint arXiv: 2401.13220
Chen X, Wang C, Ning H, Li S, Shen M. SAM-OCTA: prompting segment-anything for OCTA image segmentation. 2023, arXiv preprint arXiv: 2310.07183
Feng W, Zhu L, Yu L. Cheap lunch for medical image segmentation by fine-tuning SAM on few exemplars. 2023, arXiv preprint arXiv: 2308.14133
Zhang K, Liu D. Customized segment anything model for medical image segmentation. 2023, arXiv preprint arXiv: 2304.13785
Wang A, Islam M, Xu M, Zhang Y, Ren H. SAM meets robotic surgery: an empirical study on generalization, robustness and adaptation. In: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. 2023, 234–244
Lin L, Fan H, Zhang Z, Wang Y, Xu Y, Ling H. Tracking meets LoRA: faster training, larger model, stronger performance. 2024, arXiv preprint arXiv: 2403.05231
Kong C, Li H, Wang S. Enhancing general face forgery detection via vision transformer with low-rank adaptation. In: Proceedings of the 6th International Conference on Multimedia Information Processing and Retrieval. 2023, 102–107
Chen Z, Huang H, Andrusenko A, Hrinchuk O, Puvvada K C, Li J, Ghosh S, Balam J, Ginsburg B. SALM: speech-augmented language model with in-context learning for speech recognition and translation. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2024, 13521–13525
Dong X, Zhang P, Zang Y, Cao Y, Wang B, Ouyang L, Wei X, Zhang S, Duan H, Cao M, Zhang W, Li Y, Yan H, Gao Y, Zhang X, Li W, Li J, Chen K, He C, Zhang X, Qiao Y, Lin D, Wang J. InternLMXComposer2: mastering free-form text-image composition and comprehension in vision-language large model. 2024, arXiv preprint arXiv: 2401.16420
Ye Q, Xu H, Xu G, Ye J, Yan M, Zhou Y, Wang J, Hu A, Shi P, Shi Y, Li C, Xu Y, Chen H, Tian J, Qian Q, Zhang J, Huang F, Zhou J. mPLUG-Owl: modularization empowers large language models with multimodality. 2023, arXiv preprint arXiv: 2304.14178
Lee B K, Park B, Kim C W, Ro Y M. CoLLaVO: crayon large language and vision mOdel. 2024, arXiv preprint arXiv: 2402.11248
Yeo J H, Han S, Kim M, Ro Y M. Where visual speech meets language: VSP-LLM framework for efficient and context-aware visual speech processing. 2024, arXiv preprint arXiv: 2402.15151
Liu Z, Li S, Luo Y, Fei H, Cao Y, Kawaguchi K, Wang X, Chua T S. MolCA: molecular graph-language modeling with cross-modal projector and uni-modal adapter. In: Proceedings of 2023 Conference on Empirical Methods in Natural Language Processing. 2023, 15623–15638
Ren Y, Chen Y, Liu S, Wang B, Yu H, Cui Z. TPLLM: a traffic prediction framework based on pretrained large language models. 2024, arXiv preprint arXiv: 2403.02221
Aghajanyan A, Gupta S, Zettlemoyer L. Intrinsic dimensionality explains the effectiveness of language model fine-tuning. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. 2021, 7319–7328
Fomenko V, Yu H, Lee J, Hsieh S, Chen W. A note on LoRA. 2024, arXiv preprint arXiv: 2404.05086
Bershatsky D, Cherniuk D, Daulbaev T, Mikhalev A, Oseledets I. LoTR: low tensor rank weight adaptation. 2024, arXiv preprint arXiv: 2402.01376
Edalati A, Tahaei M, Kobyzev I, Nia V P, Clark J J, Rezagholizadeh M. KronA: parameter efficient tuning with kronecker adapter. 2022, arXiv preprint arXiv: 2212.10650
He X, Li C, Zhang P, Yang J, Wang X E. Parameter-efficient model adaptation for vision transformers. In: Proceedings of the 37th AAAI Conference on Artificial Intelligence. 2023, 817–825
Zhao Z, Gan L, Wang G, Hu Y, Shen T, Yang H, Kuang K, Wu F. Retrieval-augmented mixture of lora experts for uploadable machine learning. 2024, arXiv preprint arXiv:2406.16989.
Mahabadi R K, Henderson J, Ruder S. COMPACTER: efficient low-rank hypercomplex adapter layers. In: Proceedings of the 35th International Conference on Neural Information Processing Systems. 2021, 79
Liao B, Meng Y, Monz C. Parameter-efficient fine-tuning without introducing new latency. In: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. 2023, 4242–4260
Hendrycks D, Burns C, Basart S, Zou A, Mazeika M, Song D, Steinhardt J. Measuring massive multitask language understanding. In: Proceedings of the 9th International Conference on Learning Representations. 2021
He J, Zhou C, Ma X, Berg-Kirkpatrick T, Neubig G. Towards a unified view of parameter-efficient transfer learning. In: Proceedings of the 10th International Conference on Learning Representations. 2022
Geshkovski B, Letrouit C, Polyanskiy Y, Rigollet P. A mathematical perspective on transformers. 2023, arXiv preprint arXiv: 2312.10794
Geshkovski B, Letrouit C, Polyanskiy Y, Rigollet P. The emergence of clusters in self-attention dynamics. In: Proceedings of the 37th International Conference on Neural Information Processing Systems. 2023
Sander M E, Ablin P, Blondel M, Peyré G. Sinkformers: transformers with doubly stochastic attention. In: Proceedings of the 25th International Conference on Artificial Intelligence and Statistics. 2022, 3515–3530
Jacot A, Gabriel F, Hongler C. Neural tangent kernel: convergence and generalization in neural networks. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. 2018, 8580–8589
Touvron H, Martin L, Stone K, Albert P, Almahairi A, Babaei Y, Bashlykov N, Batra S, Bhargava P, Bhosale S, Bikel D, Blecher L, Canton Ferrer C, Chen M, Cucurull G, Esiobu D, Fernandes J, Fu J, Fu W, Fuller B, Gao C, Goswami V, Goyal N, Hartshorn A, Hosseini S, Hou R, Inan H, Kardas M, Kerkez V, Khabsa M, Kloumann I, Korenev A, Koura P S, Lachaux M A, Lavril T, Lee J, Liskovich D, Lu Y, Mao Y, Martinet X, Mihaylov T, Mishra P, Molybog I, Nie Y, Poulton A, Reizenstein J, Rungta R, Saladi K, Schelten A, Silva R, Smith E M, Subramanian R, Tan X E, Tang B, Taylor R, Williams A, Kuan J X, Xu P, Yan Z, Zarov I, Zhang Y, Fan A, Kambadur M, Narang S, Rodriguez A, Stojnic R, Edunov S, Scialom T. Llama 2: open foundation and fine-tuned chat models. 2023, arXiv preprint arXiv: 2307.09288
Chang Y, Chang Y, Wu Y. Bias-Aware Low-Rank Adaptation: Mitigating Catastrophic Inheritance of Large Language Models. 2024, arXiv preprint arXiv:2408.04556
Zhao J, Zhang Z, Chen B, Wang Z, Anandkumar A, Tian Y. Galore: memory-efficient LLM training by gradient low-rank projection. 2024, arXiv preprint arXiv: 2403.03507
Biderman D, Ortiz J G, Portes J, Paul M, Greengard P, Jennings C, King D, Havens S, Chiley V, Frankle J, Blakeney C, Cunningham J P. LoRA learns less and forgets less. 2024, arXiv preprint arXiv: 2405.09673
Han A, Li J, Huang W, Hong M, Takeda A, Jawanpuria P, Mishra B. SLTrain: a sparse plus low-rank approach for parameter and memory efficient pretraining. 2024, arXiv preprint arXiv: 2406.02214
Sui Y, Yin M, Gong Y, Xiao J, Phan H, Yuan B. ELRT: efficient low-rank training for compact convolutional neural networks. 2024, arXiv preprint arXiv: 2401.10341
Meng X, Dai D, Luo W, Yang Z, Wu S, Wang X, Wang P, Dong Q, Chen L, Sui Z. PeriodicLoRA: breaking the low-rank bottleneck in LoRA optimization. 2024, arXiv preprint arXiv: 2402.16141
Frank M, Wolfe P. An algorithm for quadratic programming. Naval Research Logistics Quarterly, 1956, 3(1–2): 95–110
Rajabzadeh H, Valipour M, Zhu T, Tahaei M, Kwon HJ, Ghodsi A, Chen B, Rezagholizadeh M. Qdylora: Quantized dynamic low-rank adaptation for efficient large language model tuning. 2024, arXiv preprint arXiv:2402.10462
Elsken T, Metzen J H, Hutter F. Neural architecture search: a survey. The Journal of Machine Learning Research, 2019, 20(1): 1997–2017
Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis M, Zettlemoyer L, Stoyanov V. RoBERTa: a robustly optimized BERT pretraining approach. 2019, arXiv preprint arXiv: 1907.11692
Wang A, Singh A, Michael J, Hill F, Levy O, Bowman S R. GLUE: a multi-task benchmark and analysis platform for natural language understanding. In: Proceedings of 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. 2018, 353–355
Renduchintala A, Konuk T, Kuchaiev O. Tied-LoRA: enhancing parameter efficiency of LoRA with weight tying. In: Proceedings of 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2024, 8694–8705
Hansen N, Ostermeier A. Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: Proceedings of the IEEE International Conference on Evolutionary Computation. 1996, 312–317
Ye M, Fang X, Du B, Yuen P C, Tao D. Heterogeneous federated learning: state-of-the-art and research challenges. ACM Computing Surveys, 2024, 56(3): 79
Liu X Y, Zhu R, Zha D, Gao J, Zhong S, White M, Qiu M. Differentially private low-rank adaptation of large language model using federated learning. 2023, arXiv preprint arXiv: 2312.17493
Acknowledgements
This work was supported in part by the National Natural Science Foundation of Chian (Grant Nos. 62025206, 62302436, U23A20296), the Zhejiang Province’s “Lingyan” R&D Project (No. 2024C01259), and the Ningbo Science and Technology Special Projects (No. 2023Z212).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests The authors declare that they have no competing interests or financial conflicts to disclose.
Additional information
Yuren Mao received his PhD degree under the supervision of Prof. Xuemin Lin in computer science from University of New South Wales, Australia in 2022. He is currently an assistant professor with the School of Software Technology, Zhejiang University, China. His current research interests include Large Language Models and its applications in Data Intelligence.
Yuhang Ge is currently working toward his PhD degree in the School of Software Technology at Zhejiang University, China. His research interests include Large Language Models and Data Management.
Yijiang Fan is currently studying as a master’s student in the School of Software Technology at Zhejiang University, China. His research interests include Large Language Models and collaborative inference.
Wenyi Xu is currently studying as a master’s student in the School of Software Technology at Zhejiang University, China. His research interests include Multimodal Large Models and RAG.
Yu Mi is currently studying as a master’s student in the School of Software Technology at Zhejiang University, China. Her research interests include Large Language Models and AI for science.
Zhonghao Hu is currently studying as a master’s student in the School of Software Technology at Zhejiang University, China. His research interests include Large Language Models and data discovery.
Yunjun Gao received the PhD degree in computer science from Zhejiang University, China, in 2008. He is currently a professor in the College of Computer Science and Technology, Zhejiang University, China. His research interests include Database, Big Data Management and Analytics, and AI interaction with DB technology.
Electronic supplementary material
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Mao, Y., Ge, Y., Fan, Y. et al. A survey on LoRA of large language models. Front. Comput. Sci. 19, 197605 (2025). https://doi.org/10.1007/s11704-024-40663-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11704-024-40663-9