Skip to main content

Advertisement

Log in

Tool learning with large language models: a survey

  • Review Article
  • Published:
Frontiers of Computer Science Aims and scope Submit manuscript

Abstract

Recently, tool learning with large language models (LLMs) has emerged as a promising paradigm for augmenting the capabilities of LLMs to tackle highly complex problems. Despite growing attention and rapid advancements in this field, the existing literature remains fragmented and lacks systematic organization, posing barriers to entry for newcomers. This gap motivates us to conduct a comprehensive survey of existing works on tool learning with LLMs. In this survey, we focus on reviewing existing literature from the two primary aspects (1) why tool learning is beneficial and (2) how tool learning is implemented, enabling a comprehensive understanding of tool learning with LLMs. We first explore the “why” by reviewing both the benefits of tool integration and the inherent benefits of the tool learning paradigm from six specific aspects. In terms of “how”, we systematically review the literature according to a taxonomy of four key stages in the tool learning workflow: task planning, tool selection, tool calling, and response generation. Additionally, we provide a detailed summary of existing benchmarks and evaluation methods, categorizing them according to their relevance to different stages. Finally, we discuss current challenges and outline potential future directions, aiming to inspire both researchers and industrial developers to further explore this emerging and promising area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Washburn S L. Tools and human evolution. Scientific American, 1960, 203(3): 62–75

    Article  MATH  Google Scholar 

  2. Gibson K R, Ingold T. Tools, Language, and Cognition in Human Evolution. Cambridge: Cambridge University Press, 1994

    MATH  Google Scholar 

  3. Von Eckardt B. What Is Cognitive Science? The MIT Press, 1995, ISBN: 9780262720236

    Book  MATH  Google Scholar 

  4. Shumaker R W, Walkup K R, Beck B B. Animal Tool Behavior: the Use and Manufacture of Tools by Animals. Baltimore: Johns Hopkins University Press, 2011

    Book  MATH  Google Scholar 

  5. Achiam J, Adler S, Agarwal S, Ahmad L, Akkaya I, et al. GPT-4 technical report. 2024, arXiv preprint arXiv: 2303.08774

    Google Scholar 

  6. El-Kassas W S, Salama C R, Rafea A A, Mohamed H K. Automatic text summarization: a comprehensive survey. Expert Systems with Applications, 2021, 165: 113679

    Article  Google Scholar 

  7. Zhang T, Ladhak F, Durmus E, Liang P, McKeown K, Hashimoto T B. Benchmarking large language models for news summarization. Transactions of the Association for Computational Linguistics, 2024, 12: 39–57

    Article  Google Scholar 

  8. Zhang B, Haddow B, Birch A. Prompting large language model for machine translation: a case study. In: Proceedings of the 40th International Conference on Machine Learning. 2023, 41092–41110

    Google Scholar 

  9. Feng Z, Zhang Y, Li H, Liu W, Lang J, Feng Y, Wu J, Liu Z. Improving LLM-based machine translation with systematic self-correction. 2024, arXiv preprint arXiv: 2402.16379v2

    MATH  Google Scholar 

  10. Yang Z, Qi P, Zhang S, Bengio Y, Cohen W W, Salakhutdinov R, Manning C D. HotpotQA: a dataset for diverse, explainable multi-hop question answering. In: Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing. 2018, 2369–2380

    Chapter  Google Scholar 

  11. Kwiatkowski T, Palomaki J, Redfield O, Collins M, Parikh A, Alberti C, Epstein D, Polosukhin I, Devlin J, Lee K, Toutanova K, Jones L, Kelcey M, Chang M W, Dai A M, Uszkoreit J, Le Q, Petrov S. Natural questions: a benchmark for question answering research. Transactions of the Association for Computational Linguistics, 2019, 7: 452–466

    Article  Google Scholar 

  12. Mallen A, Asai A, Zhong V, Das R, Khashabi D, Hajishirzi H. When not to trust language models: Investigating effectiveness of parametric and non-parametric memories. In: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. 2023, 9802–9822

    Google Scholar 

  13. Vu T, Iyyer M, Wang X, Constant N, Wei J, Wei J, Tar C, Sung Y H, Zhou D, Le Q, Luong T. FreshLLMs: refreshing large language models with search engine augmentation. In: Proceedings of Findings of the Association for Computational Linguistics ACL 2024. 2024, 13697–13720

    Chapter  Google Scholar 

  14. Ji Z, Lee N, Frieske R, Yu T, Su D, Xu Y, Ishii E, Bang Y J, Madotto A, Fung P. Survey of hallucination in natural language generation. ACM Computing Surveys, 2023, 55(12): 248

    Article  Google Scholar 

  15. Zhang Y, Li Y, Cui L, Cai D, Liu L, Fu T, Huang X, Zhao E, Zhang Y, Chen Y, Wang L, Luu A T, Bi W, Shi F, Shi S. Siren’s song in the AI ocean: a survey on hallucination in large language models. 2023, arXiv preprint arXiv: 2309.01219

    MATH  Google Scholar 

  16. Qin Y, Hu S, Lin Y, Chen W, Ding N, et al. Tool learning with foundation models. 2024, arXiv preprint arXiv: 2304.08354

    MATH  Google Scholar 

  17. Schick T, Dwivedi-Yu J, Dessì R, Raileanu R, Lomeli M, Hambro E, Zettlemoyer L, Cancedda N, Scialom T. Toolformer: language models can teach themselves to use tools. In: Proceedings of the 37th Conference on Neural Information Processing Systems. 2023, 36

    Google Scholar 

  18. Qin Y, Liang S, Ye Y, Zhu K, Yan L, Lu Y, Lin Y, Cong X, Tang X, Qian B, Zhao S, Hong L, Tian R, Xie R, Zhou J, Gerstein M, Li D, Liu Z, Sun M. ToolLLM: facilitating large language models to master 16000+ real-world APIs. In: Proceedings of the 12th International Conference on Learning Representations. 2024

    MATH  Google Scholar 

  19. Tang Q, Deng Z, Lin H, Han X, Liang Q, Cao B, Sun L. ToolAlpaca: generalized tool learning for language models with 3000 simulated cases. 2023, arXiv preprint arXiv: 2306.05301

    Google Scholar 

  20. Wang H, Qin Y, Lin Y, Pan J Z, Wong K F. Empowering large language models: tool learning for real-world interaction. In: Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2024, 2983–2986

    Chapter  MATH  Google Scholar 

  21. Yao S, Chen H, Yang J, Narasimhan K. WebShop: towards scalable real-world web interaction with grounded language agents. In: Proceedings of the 36th Conference on Neural Information Processing Systems. 2022, 20744–20757

    Google Scholar 

  22. Lazaridou A, Gribovskaya E, Stokowiec W, Grigorev N. Internet-augmented language models through few-shot prompting for open-domain question answering. 2022, arXiv preprint arXiv: 2203.05115

    Google Scholar 

  23. Lu Y, Yu H, Khashabi D. GEAR: augmenting language models with generalizable and efficient tool resolution. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics. 2024, 112–138

    MATH  Google Scholar 

  24. Pan L, Wu X, Lu X, Luu A T, Wang W Y, Kan M Y, Nakov P. Fact-checking complex claims with program-guided reasoning. In: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. 2023, 6981–7004

    Google Scholar 

  25. Wang X, Wang Z, Liu J, Chen Y, Yuan L, Peng H, Ji H. MINT: evaluating LLMs in multi-turn interaction with tools and language feedback. In: Proceedings of the 12th International Conference on Learning Representations. 2024

    MATH  Google Scholar 

  26. Parisi A, Zhao Y, Fiedel N. TALM: tool augmented language models. 2022, arXiv preprint arXiv: 2205.12255

    Google Scholar 

  27. Karpas E, Abend O, Belinkov Y, Lenz B, Lieber O, Ratner N, Shoham Y, Bata H, Levine Y, Leyton-Brown K, Muhlgay D, Rozen N, Schwartz E, Shachaf G, Shalev-Shwartz S, Shashua A, Tenenholtz M. MRKL systems: a modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning. 2022, arXiv preprint arXiv: 2205.00445

    Google Scholar 

  28. Nakano R, Hilton J, Balaji S, Wu J, Ouyang L, Kim C, Hesse C, Jain S, Kosaraju V, Saunders W, Jiang X, Cobbe K, Eloundou T, Krueger G, Button K, Knight M, Chess B, Schulman J. WebGPT: Browserassisted question-answering with human feedback. 2022, arXiv preprint arXiv: 2112.09332

    Google Scholar 

  29. Surís D, Menon S, Vondrick C. ViperGPT: visual inference via python execution for reasoning. In: Proceedings of 2023 IEEE/CVF International Conference on Computer Vision. 2023, 11854–11864

    MATH  Google Scholar 

  30. Li M, Zhao Y, Yu B, Song F, Li H, Yu H, Li Z, Huang F, Li Y. API-Bank: a comprehensive benchmark for tool-augmented LLMs. In: Proceedings of 2023 Conference on Empirical Methods in Natural Language Processing. 2023, 3102–3116

    Chapter  MATH  Google Scholar 

  31. Huang Y, Shi J, Li Y, Fan C, Wu S, Zhang Q, Liu Y, Zhou P, Wan Y, Gong N Z, Sun L C. MetaTool benchmark for large language models: deciding whether to use tools and which to use. In: Proceedings of the 12th International Conference on Learning Representations. 2024

    MATH  Google Scholar 

  32. Chen Z, Du W, Zhang W, Liu K, Liu J, Zheng M, Zhuo J, Zhang S, Lin D, Chen K, Zhao F. T-Eval: evaluating the tool utilization capability of large language models step by step. In: Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics. 2024, 9510–9529

    MATH  Google Scholar 

  33. Xu Q, Hong F, Li B, Hu C, Chen Z, Zhang J. On the tool manipulation capability of open-source large language models. 2023, arXiv preprint arXiv: 2305.16504

    MATH  Google Scholar 

  34. Gao S, Shi Z, Zhu M, Fang B, Xin X, Ren P, Chen Z, Ma J, Ren Z. Confucius: iterative tool learning from introspection feedback by easy-to-difficult curriculum. In: Proceedings of the 38th AAAI Conference on Artificial Intelligence. 2024, 18030–18038

    MATH  Google Scholar 

  35. Zhao Y, Wu J, Wang X, Tang W, Wang D, De Rijke M. Let me do it for you: towards LLM empowered recommendation via tool learning. In: Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2024, 1796–1806

    Chapter  MATH  Google Scholar 

  36. Zhao W X, Zhou K, Li J, Tang T, Wang X, et al. A survey of large language models. 2024, arXiv preprint arXiv: 2303.18223

    MATH  Google Scholar 

  37. Huang X, Liu W, Chen X, Wang X, Wang H, Lian D, Wang Y, Tang R, Chen E. Understanding the planning of LLM agents: a survey. 2024, arXiv preprint arXiv: 2402.02716

    MATH  Google Scholar 

  38. Qiao S, Ou Y, Zhang N, Chen X, Yao Y, Deng S, Tan C, Huang F, Chen H. Reasoning with language model prompting: a survey. In: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. 2023, 5368–5393

    MATH  Google Scholar 

  39. Sun J, Zheng C, Xie E, Liu Z, Chu R, et al. A survey of reasoning with foundation models. 2024, arXiv preprint arXiv: 2312.11562

    MATH  Google Scholar 

  40. Wang L, Ma C, Feng X, Zhang Z, Yang H, Zhang J, Chen Z, Tang J, Chen X, Lin Y, Zhao W X, Wei Z, Wen J. A survey on large language model based autonomous agents. Frontiers of Computer Science, 2024, 18(6): 186345

    Article  MATH  Google Scholar 

  41. Sumers T R, Yao S, Narasimhan K, Griffiths T L. Cognitive architectures for language agents. Transactions on Machine Learning Research, 2024, ISSN: 2835-8856

    Google Scholar 

  42. Xi Z, Chen W, Guo X, He W, Ding Y, et al. The rise and potential of large language model based agents: a survey. 2023, arXiv preprint arXiv: 2309.07864

    MATH  Google Scholar 

  43. Gao Y, Xiong Y, Gao X, Jia K, Pan J, Bi Y, Dai Y, Sun J, Wang M, Wang H. Retrieval-augmented generation for large language models: a survey. 2024, arXiv preprint arXiv: 2312.10997

    MATH  Google Scholar 

  44. Zhao P, Zhang H, Yu Q, Wang Z, Geng Y, Fu F, Yang L, Zhang W, Jiang J, Cui B. Retrieval-augmented generation for AI-generated content: a survey. 2024, arXiv preprint arXiv: 2402.19473

    Book  MATH  Google Scholar 

  45. Mialon G, Dessì R, Lomeli M, Nalmpantis C, Pasunuru R, Raileanu R, Rozière B, Schick T, Dwivedi-Yu J, Celikyilmaz A, Grave E, LeCun Y, Scialom T. Augmented language models: a survey. Transactions on Machine Learning Research, 2023, ISSN:2835-8856

    Google Scholar 

  46. Wang Z, Cheng Z, Zhu H, Fried D, Neubig G. What are tools anyway? A survey from the language model perspective. 2024, arXiv preprint arXiv: 2403.15452

    MATH  Google Scholar 

  47. Komeili M, Shuster K, Weston J. Internet-augmented dialogue generation. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. 2022, 8460–8478

    MATH  Google Scholar 

  48. Zhang K, Zhang H, Li G, Li J, Li Z, Jin Z. Toolcoder: Teach code generation models to use api search tools. arXiv preprint arXiv:2305.04032, 2023

    MATH  Google Scholar 

  49. Shi W, Min S, Yasunaga M, Seo M, James R, Lewis M, Zettlemoyer L, Yih W T. REPLUG: retrieval-augmented black-box language models. In: Proceedings of 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2024, 8371–8384

    Google Scholar 

  50. Paranjape B, Lundberg S, Singh S, Hajishirzi H, Zettlemoyer L, Ribeiro M T. ART: automatic multi-step reasoning and tool-use for large language models. 2023, arXiv preprint arXiv: 2303.09014

    Google Scholar 

  51. Gou Z, Shao Z, Gong Y, Shen Y, Yang Y, Duan N, Chen W. CRITIC: large language models can self-correct with tool-interactive critiquing. In: Proceedings of the 12th International Conference on Learning Representations. 2024

    MATH  Google Scholar 

  52. Thoppilan R, De Freitas D, Hall J, Shazeer N, Kulshreshtha A, et al. LaMDA: language models for dialog applications. 2022, arXiv preprint arXiv: 2201.08239

    Google Scholar 

  53. Patil S G, Zhang T, Wang X, Gonzalez J E. Gorilla: large language model connected with massive APIs. 2023, arXiv preprint arXiv: 2305.15334

    Google Scholar 

  54. Hao S, Liu T, Wang Z, Hu Z. ToolkenGPT: augmenting frozen language models with massive tools via tool embeddings. In: Proceedings of the 37th Conference on Neural Information Processing Systems. 2023, 36

    MATH  Google Scholar 

  55. Zhuang Y, Yu Y, Wang K, Sun H, Zhang C. ToolQA: a dataset for LLM question answering with external tools. In: Proceedings of the 37th Conference on Neural Information Processing Systems. 2024, 36

    MATH  Google Scholar 

  56. Zhang K, Chen H, Li L, Wang W. Syntax error-free and generalizable tool use for LLMS via finite-state decoding. 2024, arXiv preprint arXiv: 2310.07075v1

    Google Scholar 

  57. Gu Y, Shu Y, Yu H, Liu X, Dong Y, Tang J, Srinivasa J, Latapie H, Su Y. Middleware for LLMs: tools are instrumental for language agents in complex environments. 2024, arXiv preprint arXiv: 2402.14672

    Google Scholar 

  58. Cobbe K, Kosaraju V, Bavarian M, Chen M, Jun H, Kaiser L, Plappert M, Tworek J, Hilton J, Nakano R, Hesse C, Schulman J. Training verifiers to solve math word problems. 2021, arXiv preprint arXiv: 2110.14168

    Google Scholar 

  59. Shao Z, Huang F, Huang M. Chaining simultaneous thoughts for numerical reasoning. In: Proceedings of Findings of the Association for Computational Linguistics. 2022, 2533–2547

    MATH  Google Scholar 

  60. Kadlčík M, Štefánik M, Sotolar O, Martinek V. Calc-X and calcformers: empowering arithmetical chain-of-thought through interaction with symbolic systems. In: Proceedings of 2023 Conference on Empirical Methods in Natural Language Processing. 2023, 12101–12108

    Chapter  MATH  Google Scholar 

  61. He-Yueya J, Poesia G, Wang R E, Goodman N D. Solving math word problems by combining language models with symbolic solvers. In: Proceedings of the 37th Conference on Neural Information Processing Systems. 2023

    Google Scholar 

  62. Zhang B, Zhou K, Wei X, Zhao X, Sha J, Wang S, Wen J R. Evaluating and improving tool-augmented computation-intensive math reasoning. In: Proceedings of the 37th International Conference on Neural Information Processing Systems. 2024, 1023

    MATH  Google Scholar 

  63. Gou Z, Shao Z, Gong Y, Shen Y, Yang Y, Huang M, Duan N, Chen W. ToRA: a tool-integrated reasoning agent for mathematical problem solving. In: Proceedings of the 12th International Conference on Learning Representations. 2024

    MATH  Google Scholar 

  64. Das D, Banerjee D, Aditya S, Kulkarni A. MATHSENSEI: a tool-augmented large language model for mathematical reasoning. In: Proceedings of 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2024, 942–966

    MATH  Google Scholar 

  65. Veerendranath V, Shah V, Ghate K. Calc-CMU at semeval-2024 task 7: pre-calc–learning to use the calculator improves numeracy in language models. In: Proceedings of the 18th International Workshop on Semantic Evaluation. 2024, 1468–1475

    MATH  Google Scholar 

  66. Bulusu A, Man B, Jagmohan A, Vempaty A, Mari-Wyka J, Akkil D. MathViz-E: A case-study in domain-specialized tool-using agents. 2024, arXiv preprint arXiv: 2407.17544

    Google Scholar 

  67. Gao L, Madaan A, Zhou S, Alon U, Liu P, Yang Y, Callan J, Neubig G. PAL: program-aided language models. In: Proceedings of the 40th International Conference on Machine Learning. 2023, 10764–10799

    Google Scholar 

  68. Chen W, Ma X, Wang X, Cohen W W. Program of thoughts prompting: disentangling computation from reasoning for numerical reasoning tasks. Transactions on Machine Learning Research, 2023, ISSN: 2835-8856

    MATH  Google Scholar 

  69. Lu P, Peng B, Cheng H, Galley M, Chang K W, Wu Y N, Zhu S C, Gao J. Chameleon: plug-and-play compositional reasoning with large language models. In: Proceedings of the 37th Conference on Neural Information Processing Systems. 2023, 36

    MATH  Google Scholar 

  70. Wang X, Peng H, Jabbarvand R, Ji H. LETI: learning to generate from textual interactions. In: Proceedings of Findings of the Association for Computational Linguistics. 2024, 223–239

    MATH  Google Scholar 

  71. Wu J, Zhu R, Chen N, Sun Q, Li X, Gao M. Structure-aware fine-tuning for code pre-trained models. In: Proceedings of 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation. 2024, 15362–15372

    Google Scholar 

  72. Zhang K, Li J, Li G, Shi X, Jin Z. CodeAgent: enhancing code generation with tool-integrated agent systems for real-world repo-level coding challenges. In: Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics. 2024, 13643–13658

    MATH  Google Scholar 

  73. Inaba T, Kiyomaru H, Cheng F, Kurohashi S. MultiTool-CoT: GPT-3 can use multiple external tools with chain of thought prompting. In: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. 2023, 1522–1532

    MATH  Google Scholar 

  74. Bran A M, Cox S, Schilter O, Baldassari C, White A D, Schwaller P. Augmenting large language models with chemistry tools. Nature Machine Intelligence, 2024, 6(5): 525–535

    Article  Google Scholar 

  75. Ramos M C, Collison C J, White A D. A review of large language models and autonomous agents in chemistry. 2024, arXiv preprint arXiv: 2407.01603

    MATH  Google Scholar 

  76. Jin Q, Yang Y, Chen Q, Lu Z. GeneGPT: augmenting large language models with domain tools for improved access to biomedical information. Bioinformatics, 2024, 40(2): btae075

    Article  Google Scholar 

  77. Theuma A, Shareghi E. Equipping language models with tool use capability for tabular data analysis in finance. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics. 2024, 90–103

    MATH  Google Scholar 

  78. Gao S, Wen Y, Zhu M, Wei J, Cheng Y, Zhang Q, Shang S. Simulating financial market via large language model based agents. 2024, arXiv preprint arXiv: 2406.19966

    MATH  Google Scholar 

  79. Zhang W, Zhao L, Xia H, Sun S, Sun J, Qin M, Li X, Zhao Y, Zhao Y, Cai X, Zheng L T, Wang X R, An B. A multimodal foundation agent for financial trading: tool-augmented, diversified, and generalist. In: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2024, 4314–4325

    Chapter  MATH  Google Scholar 

  80. Jin Q, Wang Z, Yang Y, Zhu Q, Wright D, Huang T, Wilbur W J, He Z, Taylor A, Chen Q, Lu Z. AgentMD: empowering language agents for risk prediction with large-scale clinical tool learning. 2024, arXiv preprint arXiv: 2402.13225

    Google Scholar 

  81. Li B, Yan T, Pan Y, Luo J, Ji R, Ding J, Xu Z, Liu S, Dong H, Lin Z, Wang Y. MmedAgent: learning to use medical tools with multi-modal agent. 2024, arXiv preprint arXiv: 2407.02483

    MATH  Google Scholar 

  82. Yang Z, Li L, Wang J, Lin K, Azarnasab E, Ahmed F, Liu Z, Liu C, Zeng M, Wang L. MM-REACT: prompting chatGPT for multimodal reasoning and action. 2023, arXiv preprint arXiv: 2303.11381

    MATH  Google Scholar 

  83. Liu Z, He Y, Wang W, Wang W, Wang Y, Chen S, Zhang Q, Yang Y, Li Q, Yu J, Li K, Chen Z, Yang X, Zhu X, Wang Y, Wang L, Luo P, Dai J, Qiao Y. InternChat: solving vision-centric tasks by interacting with chatbots beyond language. 2023, arXiv preprint arXiv: 2305.05662v2

    MATH  Google Scholar 

  84. Gao D, Ji L, Zhou L, Lin K Q, Chen J, Fan Z, Shou M Z. AssistGPT: a general multi-modal assistant that can plan, execute, inspect, and learn. 2023, arXiv preprint arXiv: 2306.08640

    Google Scholar 

  85. Gao Z, Du Y, Zhang X, Ma X, Han W, Zhu S C, Li Q. CLOVA: a closed-loop visual assistant with tool usage and update. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 13258–13268

    Google Scholar 

  86. Zhao L, Yang Y, Zhang K, Shao W, Zhang Y, Qiao Y, Luo P, Ji R. DiffAgent: fast and accurate text-to-image API selection with large language model. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024, 6390–6399

    MATH  Google Scholar 

  87. Ma Z, Huang W, Zhang J, Gupta T, Krishna R. m&m’s: a benchmark to evaluate tool-use for multi-step multi-modal tasks. 2024, arXiv preprint arXiv: 2403.11085

    Google Scholar 

  88. Wang C, Luo W, Chen Q, Mai H, Guo J, Dong S, Xuan X, Li Z, Ma L, Gao S. Tool-LMM: a large multi-modal model for tool agent learning. 2023, arXiv preprint arXiv: 2401.10727v1

    MATH  Google Scholar 

  89. Shen Y, Song K, Tan X, Li D, Lu W, Zhuang Y. HuggingGPT: solving AI tasks with chatGPT and its friends in hugging face. In: Proceedings of the 37th Conference on Neural Information Processing Systems. 2024, 36

    MATH  Google Scholar 

  90. Lyu B, Cong X, Yu H, Yang P, Qin Y, Ye Y, Lu Y, Zhang Z, Yan Y, Lin Y, Liu Z, Sun M. GitAgent: facilitating autonomous agent with GitHub by tool extension. 2023, arXiv preprint arXiv: 2312.17294

    Google Scholar 

  91. Wei J, Wang X, Schuurmans D, Bosma M, Ichter B, Xia F, Chi E H, Le Q V, Zhou D. Chain-of-thought prompting elicits reasoning in large language models. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. 2022, 24824–24837

    Google Scholar 

  92. Yao S, Zhao J, Yu D, Du N, Shafran I, Narasimhan K R, Cao Y. ReAct: synergizing reasoning and acting in language models. In: Proceedings of the 11th International Conference on Learning Representations. 2023

    Google Scholar 

  93. Song Y, Xiong W, Zhu D, Li C, Wang K, Tian Y, Li S. RestGPT: connecting large language models with real-world applications via RESTful APIs. 2023, arXiv preprint arXiv: 2306.06624v1

    MATH  Google Scholar 

  94. Ruan J, Chen Y, Zhang B, Xu Z, Bao T, Du G, Shi S, Mao H, Zeng X, Zhao R. TPTU: task planning and tool usage of large language modelbased AI agents. 2023, arXiv preprint arXiv: 2308.03427v1

    Google Scholar 

  95. Zhuang Y, Chen X, Yu T, Mitra S, Bursztyn V S, Rossi R A, Sarkhel S, Zhang C. ToolChain*: efficient action space navigation in large language models with a* search. In: Proceedings of the 12th International Conference on Learning Representations. 2024

    Google Scholar 

  96. Liu Z, Lai Z, Gao Z, Cui E, Li Z, Zhu X, Lu L, Chen Q, Qiao Y, Dai J, Wang W. ControlLLM: augment language models with tools by searching on graphs. 2023, arXiv preprint arXiv: 2310.17796

    Google Scholar 

  97. Chen Y, Lv A, Lin T E, Chen C, Wu Y, Huang F, Li Y, Yan R. Fortify the shortest stave in attention: enhancing context awareness of large language models for effective tool use. In: Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics. 2024, 11160–11174

    MATH  Google Scholar 

  98. Huang T, Jung D, Kumar V, Kachuee M, Li X, Xu P, Chen M. Planning and editing what you retrieve for enhanced tool learning. In: Proceedings of Findings of the Association for Computational Linguistics. 2024, 975–988

    MATH  Google Scholar 

  99. Shi Z, Gao S, Chen X, Feng Y, Yan L, Shi H, Yin D, Chen Z, Verberne S, Ren Z. Chain of tools: large language model is an automatic multi-tool learner. 2024, arXiv preprint arXiv: 2405.16533v1

    MATH  Google Scholar 

  100. Wu X, Shen Y, Shan C, Song K, Wang S, Zhang B, Feng J, Cheng H, Chen W, Xiong Y, Li D. Can graph learning improve task planning? 2024, arXiv preprint arXiv: 2405.19119v1

    Google Scholar 

  101. Liu Y, Yuan Y, Wang C, Han J, Ma Y, Zhang L, Zheng N, Xu H. From summary to action: enhancing large language models for complex tasks with open world APIs. 2024, arXiv preprint arXiv: 2402.18157

    Google Scholar 

  102. Zheng Y, Li P, Yan M, Zhang J, Huang F, Liu Y. Budget-constrained tool learning with planning. In: Proceedings of Findings of the Association for Computational Linguistics ACL 2024. 2024, 9039–9052

    Chapter  MATH  Google Scholar 

  103. Qu C, Dai S, Wei X, Cai H, Wang S, Yin D, Xu J, Wen J R. From exploration to mastery: enabling LLMs to master tools via self-driven interactions. 2024, arXiv preprint arXiv: 2410.08197

    Google Scholar 

  104. Liang Y, Wu C, Song T, Wu W, Xia Y, Liu Y, Ou Y, Lu S, Ji L, Mao S, Wang Y, Shou L, Gong M, Duan N. Taskmatrix. AI: Completing tasks by connecting foundation models with millions of APIs. Intelligent Computing, 2024, 3: 0063

    Article  Google Scholar 

  105. Qian C, Xiong C, Liu Z, Liu Z. Toolink: linking toolkit creation and using through chain-of-solving on open-source model. In: Proceedings of 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2024, 831–854

    MATH  Google Scholar 

  106. Kong Y, Ruan J, Chen Y, Zhang B, Bao T, Shi S, Du G, Hu X, Mao H, Li Z, Zeng X, Zhao R. TPTU-v2: boosting task planning and tool usage of large language model-based agents in real-world systems. 2023, arXiv preprint arXiv: 2311.11315

    Google Scholar 

  107. Shen W, Li C, Chen H, Yan M, Quan X, Chen H, Zhang J, Huang F. Small LLMs are weak tool learners: a multi-LLM agent. 2024, arXiv preprint arXiv: 2401.07324

    MATH  Google Scholar 

  108. Gao S, Dwivedi-Yu J, Yu P, Tan X E, Pasunuru R, Golovneva O, Sinha K, Celikyilmaz A, Bosselut A, Wang T. Efficient tool use with chain-of-abstraction reasoning. 2024, arXiv preprint arXiv: 2401.17464

    Google Scholar 

  109. Gui A, Li J, Dai Y, Du N, Xiao H. Look before you leap: towards decision-aware and generalizable tool-usage for large language models. 2024, arXiv preprint arXiv: 2402.16696

    Google Scholar 

  110. Ge Y, Hua W, Mei K, Tan J, Xu S, Li Z, Zhang Y. OpenAGI: when LLM meets domain experts. In: Proceedings of the 37th Conference on Neural Information Processing Systems. 2023, 36

    MATH  Google Scholar 

  111. Wang Y, Yu J, Yao Z, Zhang J, Xie Y, Tu S, Fu Y, Feng Y, Zhang J, Zhang J, Huang B, Li Y, Yuan H, Hou L, Li J, Tang J. A solution-based LLM API-using methodology for academic information seeking. 2024, arXiv preprint arXiv: 2405.15165

    MATH  Google Scholar 

  112. Chen S, Wang Y, Wu Y F, Chen Q G, Xu Z, Luo W, Zhang K, Zhang L. Advancing tool-augmented large language models: integrating insights from errors in inference trees. 2024, arXiv preprint arXiv: 2406.07115

    MATH  Google Scholar 

  113. Liu Z, Hoang T, Zhang J, Zhu M, Lan T, Kokane S, Tan J, Yao W, Liu Z, Feng Y, Murthy R, Yang L, Savarese S, Niebles J C, Wang H, Heinecke S, Xiong C. APIGen: automated pipeline for generating verifiable and diverse function-calling datasets. 2024, arXiv preprint arXiv: 2406.18518

    Google Scholar 

  114. Sparck Jones K. A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation, 1972, 28(1): 11–21

    Article  MathSciNet  MATH  Google Scholar 

  115. Robertson S, Zaragoza H. The probabilistic relevance framework: Bm25 and beyond. Foundations and Trends® in Information Retrieval, 2009, 3(4): 333–389

    Article  MATH  Google Scholar 

  116. Reimers N, Gurevych I. Sentence-BERT: sentence embeddings using Siamese BERT-networks. In: Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. 2019, 3982–3992

    MATH  Google Scholar 

  117. Xiong L, Xiong C, Li Y, Tang K F, Liu J, Bennett P N, Ahmed J, Overwijk A. Approximate nearest neighbor negative contrastive learning for dense text retrieval. In: Proceedings of the 9th International Conference on Learning Representations. 2021

    MATH  Google Scholar 

  118. Hofstätter S, Lin S C, Yang J H, Lin J, Hanbury A. Efficiently teaching an effective dense retriever with balanced topic aware sampling. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2021, 113–122

    Chapter  MATH  Google Scholar 

  119. Izacard G, Caron M, Hosseini L, Riedel S, Bojanowski P, Joulin A, Grave E. Unsupervised dense information retrieval with contrastive learning. Transactions on Machine Learning Research, 2022, ISSN: 2385-8856

    Google Scholar 

  120. Gao L, Callan J. Unsupervised corpus aware language model pretraining for dense passage retrieval. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. 2022, 2843–2853

    MATH  Google Scholar 

  121. Yuan L, Chen Y, Wang X, Fung Y R, Peng H, Ji H. CRAFT: customizing LLMs by creating and retrieving from specialized toolsets. In: Proceedings of the 12th International Conference on Learning Representations. 2024

    MATH  Google Scholar 

  122. Anantha R, Bandyopadhyay B, Kashi A, Mahinder S, Hill A W, Chappidi S. ProTIP: progressive tool retrieval improves planning. 2023, arXiv preprint arXiv: 2312.10332

    Google Scholar 

  123. Zheng Y, Li P, Liu W, Liu Y, Luan J, Wang B. ToolRerank: adaptive and hierarchy-aware reranking for tool retrieval. In: Proceedings of 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation. 2024, 16263–16273

    MATH  Google Scholar 

  124. Qu C, Dai S, Wei X, Cai H, Wang S, Yin D, Xu J, Wen J R. Towards completeness-oriented tool retrieval for large language models. In: Proceedings of the 33rd ACM International Conference on Information and Knowledge Management. 2024, 1930–1940

    Chapter  MATH  Google Scholar 

  125. Chen Z, Zhou K, Zhang B, Gong Z, Zhao X, Wen J R. ChatCoT: tool-augmented chain-of-thought reasoning on chat-based large language models. In: Proceedings of Findings of the Association for Computational Linguistics: EMNLP 2023, 2023, 14777–14790

    Chapter  Google Scholar 

  126. Liu X, Peng Z, Yi X, Xie X, Xiang L, Liu Y, Xu D. ToolNet: connecting large language models with massive tools via tool graph. 2024, arXiv preprint arXiv: 2403.00839

    MATH  Google Scholar 

  127. Mekala D, Weston J, Lanchantin J, Raileanu R, Lomeli M, Shang J, Dwivedi-Yu J. TOOLVERIFIER: generalization to new tools via self-verification. 2024, arXiv preprint arXiv: 2402.14158

    Google Scholar 

  128. Qiao S, Gui H, Lv C, Jia Q, Chen H, Zhang N. Making language models better tool learners with execution feedback. In: Proceedings of 2024 Conference of the North American Chapter of the Association for Computational Linguistics. 2024, 3550–3568

    Google Scholar 

  129. Du Y, Wei F, Zhang H. AnyTool: self-reflective, hierarchical agents for large-scale API calls. In: Proceedings of the 41st International Conference on Machine Learning. 2024

    MATH  Google Scholar 

  130. Fore M, Singh S, Stamoulis D. GeckOpt: LLM system efficiency via intent-based tool selection. In: Proceedings of Great Lakes Symposium on VLSI 2024. 2024, 353–354

    Chapter  Google Scholar 

  131. Zhang Y, Cai H, Song X, Chen Y, Sun R, Zheng J. Reverse chain: a generic-rule for LLMs to master multi-API planning. In: Proceedings of Findings of the Association for Computational Linguistics. 2024, 302–325

    MATH  Google Scholar 

  132. Yuan S, Song K, Chen J, Tan X, Shen Y, Kan R, Li D, Yang D. EASYTOOL: enhancing LLM-based agents with concise tool instruction. 2024, arXiv preprint arXiv: 2401.06201

    MATH  Google Scholar 

  133. Shi Z, Gao S, Chen X, Feng Y, Yan L, Shi H, Yin D, Ren P, Verberne S, Ren Z. Learning to use tools via cooperative and interactive agents. 2024, arXiv preprint arXiv: 2403.03031v4

    Book  MATH  Google Scholar 

  134. Yang R, Song L, Li Y, Zhao S, Ge Y, Li X, Shan Y. GPT4Tools: teaching large language model to use tools via self-instruction. In: Proceedings of the 37th Conference on Neural Information Processing Systems. 2023, 36

    MATH  Google Scholar 

  135. Li L, Chai Y, Wang S, Sun Y, Tian H, Zhang N, Wu H. Tool-augmented reward modeling. In: Proceedings of the 12th International Conference on Learning Representations. 2024

    MATH  Google Scholar 

  136. Wang B, Fang H, Eisner J, Van Durme B, Su Y. LLMs in the imaginarium: tool learning through simulated trial and error. In: Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics. 2024, 10583–10604

    Google Scholar 

  137. Xu F, Shi W, Choi E. RECOMP: improving retrieval-augmented LMS with compression and selective augmentation. In: Proceedings of the 12th International Conference on Learning Representations. 2024

    MATH  Google Scholar 

  138. Ye J, Li G, Gao S, Huang C, Wu Y, Li S, Fan X, Dou S, Zhang Q, Gui T, Huang X. ToolEyes: fine-grained evaluation for tool learning capabilities of large language models in real-world scenarios. 2024, arXiv preprint arXiv: 2401.00741

    MATH  Google Scholar 

  139. Huang S, Zhong W, Lu J, Zhu Q, Gao J, Liu W, Hou Y, Zeng X, Wang Y, Shang L, Jiang X, Xu R, Liu Q. Planning, creation, usage: benchmarking LLMs for comprehensive tool utilization in real-world complex scenarios. In: Proceedings of Findings of the Association for Computational Linguistics ACL 2024. 2024, 4363–4400

    Chapter  MATH  Google Scholar 

  140. Wu M, Zhu T, Han H, Tan C, Zhang X, Chen W. Seal-tools: self-instruct tool learning dataset for agent tuning and detailed benchmark. 2024, arXiv preprint arXiv: 2405.08355v1

    Google Scholar 

  141. Basu K, Abdelaziz I, Chaudhury S, Dan S, Crouse M, Munawar A, Austel V, Kumaravel S, Muthusamy V, Kapanipathi P, Lastras L A. API-BLEND: a comprehensive corpora for training and benchmarking API LLMs. In: Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics. 2024, 12859–12870

    Google Scholar 

  142. Shen H, Li Y, Meng D, Cai D, Qi S, Zhang L, Xu M, Ma Y. ShortcutsBench: a large-scale real-world benchmark for API-based agents. 2024, arXiv preprint arXiv: 2407.00132v2

    Google Scholar 

  143. Wang J, Ma Z, Li Y, Zhang S, Chen C, Chen K, Le X. GTA: a benchmark for general tool agents. 2024, arXiv preprint arXiv: 2407.08713

    MATH  Google Scholar 

  144. Ning K, Su Y, Lv X, Zhang Y, Liu J, Liu K, Xu J. WTU-EVAL: a whether-or-not tool usage evaluation benchmark for large language models. 2024, arXiv preprint arXiv: 2407.12823

    MATH  Google Scholar 

  145. Trivedi H, Khot T, Hartmann M, Manku R, Dong V, Li E, Gupta S, Sabharwal A, Balasubramanian N. AppWorld: a controllable world of apps and people for benchmarking interactive coding agents. In: Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics. 2024, 16022–16076

    Google Scholar 

  146. Ruan Y, Dong H, Wang A, Pitis S, Zhou Y, Ba J, Dubois Y, Maddison C J, Hashimoto T. Identifying the risks of lm agents with an lmemulated sandbox. In: Proceedings of the 12th International Conference on Learning Representations. 2024

    Google Scholar 

  147. Farn N, Shin R. ToolTalk: evaluating tool-usage in a conversational setting. 2023, arXiv preprint arXiv: 2311.10775

    MATH  Google Scholar 

  148. Zhong Y, Qi M, Wang R, Qiu Y, Zhang Y, Ma H. VioTGPT: learning to schedule vision tools towards intelligent video internet of things. 2023, arXiv preprint arXiv: 2312.00401

    MATH  Google Scholar 

  149. Ye J, Wu Y, Gao S, Huang C, Li S, Li G, Fan X, Zhang Q, Gui T, Huang X. RoTBench: a multi-level benchmark for evaluating the robustness of large language models in tool learning. 2024, arXiv preprint arXiv: 2401.08326

    MATH  Google Scholar 

  150. Ye J, Li S, Li G, Huang C, Gao S, Wu Y, Zhang Q, Gui T, Huang X. ToolSword: unveiling safety issues of large language models in tool learning across three stages. In: Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics. 2024, 2181–2211

    MATH  Google Scholar 

  151. Ma Y, Gou Z, Hao J, Xu R, Wang S, Pan L, Yang Y, Cao Y, Sun A, Awadalla H, Chen W. SciAgent: Tool-augmented language models for scientific reasoning. 2024, arXiv preprint arXiv: 2402.11451

    Google Scholar 

  152. Guo Z, Cheng S, Wang H, Liang S, Qin Y, Li P, Liu Z, Sun M, Liu Y. StableToolBench: towards stable large-scale benchmarking on tool learning of large language models. In: Proceedings of Findings of the Association for Computational Linguistics ACL 2024. 2024, 11143–11156

    Chapter  MATH  Google Scholar 

  153. Zhan Q, Liang Z, Ying Z, Kang D. InjecAgent: benchmarking indirect prompt injections in tool-integrated large language model agents. In: Proceedings of Findings of the Association for Computational Linguistics ACL 2024. 2024, 10471–10506

    Chapter  MATH  Google Scholar 

  154. Guo Z, Huang Y, Xiong D. CToolEval: a Chinese benchmark for LLM-powered agent evaluation in real-world API interactions. In: Proceedings of Findings of the Association for Computational Linguistics ACL 2024. 2024, 15711–15724

    Chapter  Google Scholar 

  155. Lu J, Holleis T, Zhang Y, Aumayer B, Nan F, Bai F, Ma S, Ma S, Li M, Yin G, Wang Z, Pang R. ToolSandbox: a stateful, conversational, interactive evaluation benchmark for LLM tool use capabilities. 2024, arXiv preprint arXiv: 2408.04682

    Google Scholar 

  156. Zhu M. Recall, precision and average precision. University of Waterloo, Dissertation, 2004, 6

    MATH  Google Scholar 

  157. Järvelin K, Kekäläinen J. Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems (TOIS), 2002, 20(4): 422–446

    Article  MATH  Google Scholar 

  158. Papineni K, Roukos S, Ward T, Zhu W J. Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. 2002, 311–318

    Google Scholar 

  159. Lin C Y. ROUGE: a package for automatic evaluation of summaries. In: Proceedings of Text Summarization Branches Out. 2004, 74–81

    MATH  Google Scholar 

  160. Blackwell M, Iacus S, King G, Porro G. CEM: coarsened exact matching in Stata. The Stata Journal: Promoting communications on statistics and Stata, 2009, 9(4): 524–546

    Article  MATH  Google Scholar 

  161. Ouyang L, Wu J, Jiang X, Almeida D, Wainwright C, Mishkin P, Zhang C, Agarwal S, Slama K, Ray A, Schulman J, Hilton J, Kelton F, Miller L, Simens M, Askell A, Welinder P, Christiano P, Leike J, Lowe R. Training language models to follow instructions with human feedback. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. 2022, 2011

    Google Scholar 

  162. Dao X Q, Le N B. Investigating the effectiveness of chatGPT in mathematical reasoning and problem solving: evidence from the Vietnamese national high school graduation examination. 2023, arXiv preprint arXiv: 2306.06331

    MATH  Google Scholar 

  163. Wei T, Luan J, Liu W, Dong S, Wang B. CMATH: can your language model pass Chinese elementary school math test? 2023, arXiv preprint arXiv: 2306.16636

    Google Scholar 

  164. Chen M, Tworek J, Jun H, Yuan Q, de Oliveira Pinto H P, et al. Evaluating large language models trained on code. 2021, arXiv preprint arXiv: 2107.03374

    Google Scholar 

  165. Austin J, Odena A, Nye M, Bosma M, Michalewski H, Dohan D, Jiang E, Cai C, Terry M, Le Q, Sutton C. Program synthesis with large language models. 2021, arXiv preprint arXiv: 2108.07732

    Google Scholar 

  166. Singh S, Fore M, Stamoulis D. Evaluating tool-augmented agents in remote sensing platforms. 2024, arXiv preprint arXiv: 2405.00709v1

    MATH  Google Scholar 

  167. Linardatos P, Papastefanopoulos V, Kotsiantis S. Explainable AI: a review of machine learning interpretability methods. Entropy, 2021, 23(1): 18

    Article  MATH  Google Scholar 

  168. Zhao H, Chen H, Yang F, Liu N, Deng H, Cai H, Wang S, Yin D, Du M. Explainability for large language models: a survey. ACM Transactions on Intelligent Systems and Technology, 2024, 15(2): 20

    Article  MATH  Google Scholar 

  169. Weidinger L, Mellor J, Rauh M, Griffin C, Uesato J, et al. Ethical and social risks of harm from language models. 2021, arXiv preprint arXiv: 2112.04359

    MATH  Google Scholar 

  170. Gao T, Yen H, Yu J, Chen D. Enabling large language models to generate text with citations. In: Proceedings of 2023 Conference on Empirical Methods in Natural Language Processing. 2023, 6465–6488

    Chapter  MATH  Google Scholar 

  171. Sun H, Cai H, Wang B, Hou Y, Wei X, Wang S, Zhang Y, Yin D. Towards verifiable text generation with evolving memory and self-reflection. 2024, arXiv preprint arXiv: 2312.09075

    Book  MATH  Google Scholar 

  172. Wallace E, Feng S, Kandpal N, Gardner M, Singh S. Universal adversarial triggers for attacking and analyzing NLP. In: Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. 2019, 2153–2162

    Google Scholar 

  173. Jin D, Jin Z, Zhou J T, Szolovits P. Is Bert really robust? A strong baseline for natural language attack on text classification and entailment. In: Proceedings of the 34th AAAI Conference on Artificial Intelligence. 2020, 8018–8025

    MATH  Google Scholar 

  174. Wu F, Zhang N, Jha S, McDaniel P, Xiao C. A new era in LLM security: exploring security concerns in real-world LLM-based systems. 2024, arXiv preprint arXiv: 2402.18649

    Google Scholar 

  175. Zhang J. Graph-toolFormer: to empower LLMs with graph reasoning ability via prompt augmented by chatGPT. 2023, arXiv preprint arXiv: 2304.11116

    Google Scholar 

  176. Li C, Yang R, Li T, Bafarassat M, Sharifi K, Bergemann D, Yang Z. STRIDE: a tool-assisted LLM agent framework for strategic and interactive decision-making. 2024, arXiv preprint arXiv: 2405.16376

    MATH  Google Scholar 

  177. Huang W, Abbeel P, Pathak D, Mordatch I. Language models as zero-shot planners: extracting actionable knowledge for embodied agents. In: Proceedings of the 39th International Conference on Machine Learning. 2022, 9118–9147

    MATH  Google Scholar 

  178. Chern I C, Chern S, Chen S, Yuan W, Feng K, Zhou C, He J, Neubig G, Liu P. FacTool: factuality detection in generative AI–a tool augmented framework for multi-task and multi-domain scenarios. 2023, arXiv preprint arXiv: 2307.13528

    MATH  Google Scholar 

  179. Xu S, Pang L, Shen H, Cheng X, Chua T S. Search-in-the-chain: interactively enhancing large language models with search for knowledge-intensive tasks. In: Proceedings of ACM Web Conference 2024. 2024, 1362–1373

    Chapter  MATH  Google Scholar 

  180. Kim G, Baldi P, McAleer S. Language models can solve computer tasks. In: Proceedings of the 37th International Conference on Neural Information Processing Systems. 2024, 1723

    MATH  Google Scholar 

  181. Liu Y, Peng X, Zhang Y, Cao J, Zhang X, Cheng S, Wang X, Yin J, Du T. Tool-planner: dynamic solution tree planning for large language model with tool clustering. 2024, arXiv preprint arXiv: 2406.03807v1

    MATH  Google Scholar 

  182. Erbacher P, Falissard L, Guigue V, Soulier L. Navigating uncertainty: optimizing API dependency for hallucination reduction in closed-book QA. In: Proceedings of the 46th European Conference on Information Retrieval. 2024, 393–402

    MATH  Google Scholar 

  183. Xu Q, Li Y, Xia H, Li W. Enhancing tool retrieval with iterative feedback from large language models. 2024, arXiv preprint arXiv: 2406.17465

    Book  MATH  Google Scholar 

  184. Xiao S, Liu Z, Zhang P, Muennighoff N. C-pack: Pack-aged resources to advance general chinese embedding, 2023

    Google Scholar 

  185. Gemini Team Google. Gemini: a family of highly capable multimodal models. 2024, arXiv preprint arXiv: 2312.11805

    Google Scholar 

  186. Hsieh C Y, Chen S A, Li C L, Fujii Y, Ratner A, Lee C Y, Krishna R, Pfister T. Tool documentation enables zero-shot tool-usage with large language models. 2023, arXiv preprint arXiv: 2308.00675

    Google Scholar 

  187. Xu Y, Feng Y, Mu H, Hou Y, Li Y, Wang X, Zhong W, Li Z, Tu D, Zhu Q, Zhang M, Che W. Concise and precise context compression for tool-using language models. In: Proceedings of Findings of the Association for Computational Linguistics ACL 2024. 2024, 16430–16441

    Chapter  MATH  Google Scholar 

  188. Shen Y, Song K, Tan X, Zhang W, Ren K, Yuan S, Lu W, Li D, Zhuang Y. TaskBench: benchmarking large language models for task automation. 2023, arXiv preprint arXiv: 2311.18760

    Google Scholar 

  189. Wang H, Wang H, Wang L, Hu M, Wang R, Xue B, Lu H, Mi F, Wong K F. TPE: towards better compositional reasoning over conceptual tools with multi-persona collaboration. 2023, arXiv preprint arXiv: 2309.16090

    MATH  Google Scholar 

  190. Qian C, Han C, Fung Y, Qin Y, Liu Z, Ji H. CREATOR: tool creation for disentangling abstract and concrete reasoning of large language models. In: Proceedings of Findings of Association for Computational Linguistics: EMNLP 2023. 2023, 6922–6939

    Chapter  MATH  Google Scholar 

  191. Jacovi A, Caciularu A, Herzig J, Aharoni R, Bohnet B, Geva M. A comprehensive evaluation of tool-assisted generation strategies. In: Proceedings of Findings of Findings of the Association for Computational Linguistics: EMNLP 2023. 2023, 13856–13878

    Chapter  Google Scholar 

  192. Nathani D, Wang D, Pan L, Wang W Y. MAF: multi-aspect feedback for improving reasoning in large language models. In: Proceedings of 2023 Conference on Empirical Methods in Natural Language Processing. 2023, 6591–6616

    Chapter  MATH  Google Scholar 

  193. Yao Y, Duan J, Xu K, Cai Y, Sun Z, Zhang Y. A survey on large language model (LLM) security and privacy: the good, the bad, and the ugly. High-Confidence Computing, 2024, 4: 100211

    Article  Google Scholar 

  194. Cui T, Wang Y, Fu C, Xiao Y, Li S, Deng X, Liu Y, Zhang Q, Qiu Z, Li P, Tan Z, Xiong J, Kong X, Wen Z, Xu K, Li Q. Risk taxonomy, mitigation, and assessment benchmarks of large language model systems. 2024, arXiv preprint arXiv: 2401.05778

    MATH  Google Scholar 

  195. Das B C, Amini M H, Wu Y. Security and privacy challenges of large language models: a survey. 2024, arXiv preprint arXiv: 2402.00888

    MATH  Google Scholar 

  196. Qin Y, Cai Z, Jin D, Yan L, Liang S, Zhu K, Lin Y, Han X, Ding N, Wang H, Xie R, Qi F, Liu Z, Sun M, Zhou J. WebCPM: interactive web search for Chinese long-form question answering. In: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. 2023, 8968–8988

    Google Scholar 

  197. Miao X, Oliaro G, Zhang Z, Cheng X, Jin H, Chen T, Jia Z. Towards efficient generative large language model serving: a survey from algorithms to systems. 2023, arXiv preprint arXiv: 2312.15234

    MATH  Google Scholar 

  198. Cai T, Wang X, Ma T, Chen X, Zhou D. Large language models as tool makers. In: Proceedings of the 12th International Conference on Learning Representations. 2024

    MATH  Google Scholar 

  199. Wang Z, Neubig G, Fried D. TroVE: inducing verifiable and efficient toolboxes for solving programmatic tasks. In: Proceedings of the 41st International Conference on Machine Learning. 2024, 51177–51191

    Google Scholar 

Download references

Acknowledgements

This work was funded by the National Key R&D Program of China (2023YFA1008704), the National Natural Science Foundation of China (Grant No. 62377044), Beijing Key Laboratory of Big Data Management and Analysis Methods, Major Innovation & Planning Interdisciplinary Platform for the “Double-First Class” Initiative, funds for building world-class universities (disciplines) of Renmin University of China, and PCC@RUC. The authors would like to extend their sincere gratitude to Yankai Lin for his constructive feedback throughout the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Xu.

Ethics declarations

Competing interests The authors declare that they have no competing interests or financial conflicts to disclose.

Additional information

Changle Qu is currently pursuing the PhD degree at Gaoling School of Artificial Intelligence, Renmin University of China, China. His current research interests mainly include tool learning with large language models and information retrieval.

Sunhao Dai is a PhD candidate at Gaoling School of Artificial Intelligence, Renmin University of China, China. His current research interests lie in recommender systems and information retrieval. He has published several papers in top-tier conferences such as KDD, SIGIR, ICDE, CIKM, and RecSys.

Xiaochi Wei received PhD degree from Beijing Institute of Technology, China in 2018, under the supervision of Prof. Heyan Huang. He visited National University of Singapore, Singapore from 2015 to 2016, under the supervision of Prof. Tat-Seng Chua. He is a Senior R&D Engineer in Baidu Inc.. His research interests include question answering, multi-media information retrieval, and recommender systems. He has served as PC member in severals conferences, e.g., AAAI, IJCAI, ACL, and EMNLP.

Hengyi Cai received PhD degree from Institute of Computing Technology, Chinese Academy of Sciences (Outstanding Graduate), China in 2021. He joined JD’s doctoral management trainee program in the summer of 2021. Previously, he was a research intern at Baidu’s Search Science Team in 2020, under the supervision of Dr. Dawei Yin. His research interests include dialogue system, question answering, and information retrieval. He served or is serving as PC member for top-tire conference including ACL, EMNLP, KDD, NeurIPS, and SIGIR.

Shuaiqiang Wang received the BSc and PhD degrees in computer science from Shandong University, China in 2004 and 2009, respectively. He is currently a principle algorithm engineer with Baidu Inc.. Previously, he was a research scientist with JD.com. Before that, he was an Assistant Professor with the University of Manchester, UK and the University of Jyvaskyla, Finland. served as Senior PC Member of IJCAI, and PC Member of WWW, SIGIR, and WSDM in recent years. He is broadly interested in several research areas including information retrieval, recommender systems, and data mining.

Dawei Yin received PhD degree from Lehigh University, USA in 2013. He is senior director of engineering with Baidu inc.. He is managing the search science team with Baidu. Previously, he was senior director, managing the recommendation engineering team with JD.com between 2016 and 2019. Prior to JD.com, he was senior research manager with Yahoo Labs, leading relevance science team and in charge of Core Search Relevance of Yahoo Search. His research interests include data mining, applied machine learning, information retrieval and recommender system. He published more than 100 research papers in premium conferences and journals, and was the recipients of WSDM 2016 Best Paper Award, KDD 2016 Best Paper Award, WSDM 2018 Best Student Paper Award.

Jun Xu is a professor with the Gaoling School of Artificial Intelligence, Renmin University of China, China. His research interests focus on learning to rank and semantic matching in web search. He served or is serving as SPC for SIGIR, WWW, and AAAI, editorial board member for JASIST, and associate editor for ACM TOIS. He has won the Test of Time Award Honorable Mention in SIGIR (2019), Best Paper Award in AIRS (2010) and Best Paper Runner-up in CIKM (2017).

Ji-rong Wen is a professor of the Renmin University of China (RUC), China. He is also the dean of the School of Information and executive dean of the Gaoling School of Artificial Intelligence with RUC. His main research interests include information retrieval, data mining, and machine learning. He was a senior researcher and group manager of the Web Search and Mining Group with Microsoft Research Asia (MSRA).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, C., Dai, S., Wei, X. et al. Tool learning with large language models: a survey. Front. Comput. Sci. 19, 198343 (2025). https://doi.org/10.1007/s11704-024-40678-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11704-024-40678-2

Keywords