References
Lizio M, Harshbarger J, Shimoji H, Severin J, Kasukawa T, Sahin S, Abugessaisa I, Fukuda S, Hori F, Ishikawa-Kato S, Mungall C J, Arner E, Baillie J K, Bertin N, Bono H, De Hoon M, Diehl A D, Dimont E, Freeman T C, Fujieda K, Hide W, Kaliyaperumal R, Katayama T, Lassmann T, Meehan T F, Nishikata K, Ono H, Rehli M, Sandelin A, Schultes E A, ’t Hoen P A, Tatum Z, Thompson M, Toyoda T, Wright D W, Daub C O, Itoh M, Carninci P, Hayashizaki Y, Forrest A R, Kawaji H. Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biology, 2015, 16(1): 22
Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, García-García J, Sanz F, Furlong L I. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Research, 2017, 45(D1): D833–D839
The Tabula Sapiens Consortium. The tabula sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science, 2022, 376(6594): eabl4896
Tang S, Cui X, Wang R, Li S, Li S, Huang X, Chen S. scCASE: accurate and interpretable enhancement for single-cell chromatin accessibility sequencing data. Nature Communications, 2024, 15(1): 1629
Chen S, Wang R, Long W, Jiang R. ASTER: accurately estimating the number of cell types in single-cell chromatin accessibility data. Bioinformatics, 2023, 39(1): btac842
Jagadeesh K A, Dey K K, Montoro D T, Mohan R, Gazal S, Engreitz J M, Xavier R J, Price A L, Regev A. Identifying disease-critical cell types and cellular processes by integrating single-cell RNA-sequencing and human genetics. Nature Genetics, 2022, 54(10): 1479–1492
Zhang M J, Hou K, Dey K K, Sakaue S, Jagadeesh K A, Weinand K, Taychameekiatchai A, Rao P, Pisco A O, Zou J, Wang B, Gandal M, Raychaudhuri S, Pasaniuc B, Price A L. Polygenic enrichment distinguishes disease associations of individual cells in single-cell RNA-seq data. Nature Genetics, 2022, 54(10): 1572–1580
GTEx Consortium. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science, 2015, 348(6235): 648–660
Hao Y, Stuart T, Kowalski M H, Choudhary S, Hoffman P, Hartman A, Srivastava A, Molla G, Madad S, Fernandez-Granda C, Satija R. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nature Biotechnology, 2024, 42(2): 293–304
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant Nos. 62172318, 62372349, 62132015). We would like to thank the developers of all datasets mentioned in this paper.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests The authors declare that they have no competing interests or financial conflicts to disclose.
Additional information
Electronic supplementary material
Supplementary material is available in the online version of this article at journal.hep.com.cn and link.springer.com.
Rights and permissions
About this article
Cite this article
Shou, Y., Wang, B. & Yang, Z. TripletDGC: assessing critical cell types of disease genes by integrating single-cell genomics and human genetics. Front. Comput. Sci. 19, 1910919 (2025). https://doi.org/10.1007/s11704-025-41165-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11704-025-41165-y