Skip to main content

Advertisement

Log in

scLT-kit: a versatile toolkit for automated processing and analysis of single-cell lineage tracing data

  • Letter
  • Published:
Frontiers of Computer Science Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Wagner D E, Klein A M. Lineage tracing meets single-cell omics: opportunities and challenges. Nature Reviews Genetics, 2020, 21(7): 410–427

    MATH  Google Scholar 

  2. Weinreb C, Rodriguez-Fraticelli A, Camargo F D, Klein A M. Lineage tracing on transcriptional landscapes links state to fate during differentiation. Science, 2020, 367(6479): eaaw3381

    MATH  Google Scholar 

  3. Packer J S, Zhu Q, Huynh C, Sivaramakrishnan P, Preston E, Dueck H, Stefanik D, Tan K, Trapnell C, Kim J, Waterston R H, Murray J I. A lineage-resolved molecular atlas of C. elegans embryogenesis at single-cell resolution. Science, 2019, 365(6459): eaax1971

    Google Scholar 

  4. Biddy B A, Kong W, Kamimoto K, Guo C, Waye S E, Sun T, Morris S A. Single-cell mapping of lineage and identity in direct reprogramming. Nature, 2018, 564(7735): 219–224

    Google Scholar 

  5. Oren Y, Tsabar M, Cuoco M S, Amir-Zilberstein L, Cabanos H F, Hütter J C, Hu B, Thakore P I, Tabaka M, Fulco C P, Colgan W, Cuevas B M, Hurvitz S A, Slamon D J, Deik A, Pierce K A, Clish C, Hata A N, Zaganjor E, Lahav G, Politi K, Brugge J S, Regev A. Cycling cancer persister cells arise from lineages with distinct programs. Nature, 2021, 596(7873): 576–582

    Google Scholar 

  6. Chang M T, Shanahan F, Nguyen T T T, Staben S T, Gazzard L, Yamazoe S, Wertz I E, Piskol R, Yang Y A, Modrusan Z, Haley B, Evangelista M, Malek S, Foster S A, Ye X. Identifying transcriptional programs underlying cancer drug response with TraCe-seq. Nature Biotechnology, 2022, 40(1): 86–93

    Google Scholar 

  7. Wolf F A, Angerer P, Theis F J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biology, 2018, 19(1): 15

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2020YFA0712403 and 2021YFF1200901), the National Natural Science Foundation of China (NSFC) (Grant Nos. 62133006 and 92268104), the Tsinghua University Initiative Scientific Research Program (No. 20221080076), and the China Postdoctoral Science Foundation (No. 2022M721839).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenbo Guo or Jin Gu.

Ethics declarations

Competing interests The authors declare that they have no competing interests or financial conflicts to disclose.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Chen, Z., Li, X. et al. scLT-kit: a versatile toolkit for automated processing and analysis of single-cell lineage tracing data. Front. Comput. Sci. 19, 1910918 (2025). https://doi.org/10.1007/s11704-025-41249-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11704-025-41249-9