Skip to main content

Advertisement

Log in

Facilitating single-cell chromatin accessibility research with a user-friendly database

  • Letter
  • Published:
Frontiers of Computer Science Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Chen X, Chen S, Song S, Gao Z, Hou L, Zhang X, Lv H, Jiang R. Cell type annotation of single-cell chromatin accessibility data via supervised Bayesian embedding. Nature Machine Intelligence, 2022, 4(2): 116–126

    Article  MATH  Google Scholar 

  2. Buenrostro J D, Wu B, Litzenburger U M, Ruff D, Gonzales M L, Snyder M P, Chang H Y, Greenleaf W J. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature, 2015, 523(7561): 486–490

    Article  Google Scholar 

  3. Danese A, Richter M L, Chaichoompu K, Fischer D S, Theis F J, Colomé-Tatché M. EpiScanpy: integrated single-cell epigenomic analysis. Nature Communications, 2021, 12(1): 5228

    Article  Google Scholar 

  4. Fang R, Preissl S, Li Y, Hou X, Lucero J, Wang X, Motamedi A, Shiau A K, Zhou X, Xie F, Mukamel E A, Zhang K, Zhang Y, Behrens M M, Ecker J R, Ren B. Comprehensive analysis of single cell ATAC-seq data with SnapATAC. Nature Communications, 2021, 12(1): 1337

    Article  Google Scholar 

  5. Stuart T, Srivastava A, Madad S, Lareau C A, Satija R. Single-cell chromatin state analysis with Signac. Nature Methods, 2021, 18(11): 1333–1341

    Article  Google Scholar 

  6. Granja J M, Corces M R, Pierce S E, Bagdatli S T, Choudhry H, Chang H Y, Greenleaf W J. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nature Genetics, 2021, 53(3): 403–411

    Article  Google Scholar 

  7. Wolf F A, Angerer P, Theis F J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biology, 2018, 19(1): 15

    Article  MATH  Google Scholar 

  8. Feng S, Li S, Chen L, Chen S. Unveiling potential threats: backdoor attacks in single-cell pre-trained models. Cell Discovery, 2024, 10(1): 122

    Article  MATH  Google Scholar 

  9. Chen S, Yan G, Zhang W, Li J, Jiang R, Lin Z. RA3 is a reference-guided approach for epigenetic characterization of single cells. Nature Communications, 2021, 12(1): 2177

    Article  MATH  Google Scholar 

  10. Li S, Zhuang X, Jia S, Tang S, Yan L, Hua H, Jia Y, Zhang X, Zhang Y, Yang Q, Chen S. MultiKano: an automatic cell type annotation tool for single-cell multi-omics data based on Kolmogorov-Arnold network and data augmentation. Protein & Cell, 2024

    MATH  Google Scholar 

  11. Tang S, Cui X, Wang R, Li S, Li S, Huang X, Chen S. scCASE: accurate and interpretable enhancement for single-cell chromatin accessibility sequencing data. Nature Communications, 2024, 15(1): 1629

    Article  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant Nos. 62473212, 62203236) and the Young Elite Scientists Sponsorship Program by CAST [2023QNRC001].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengquan Chen.

Ethics declarations

Competing interests The authors declare that they have no competing interests or financial conflicts to disclose.

Additional information

Electronic supplementary material Supplementary material is available in the online version of this article at journal.hep.com.cn and link.springer.com.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, H., Li, S., Liang, H. et al. Facilitating single-cell chromatin accessibility research with a user-friendly database. Front. Comput. Sci. 19, 1911920 (2025). https://doi.org/10.1007/s11704-025-41390-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11704-025-41390-5