References
Chen X, Chen S, Song S, Gao Z, Hou L, Zhang X, Lv H, Jiang R. Cell type annotation of single-cell chromatin accessibility data via supervised Bayesian embedding. Nature Machine Intelligence, 2022, 4(2): 116–126
Buenrostro J D, Wu B, Litzenburger U M, Ruff D, Gonzales M L, Snyder M P, Chang H Y, Greenleaf W J. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature, 2015, 523(7561): 486–490
Danese A, Richter M L, Chaichoompu K, Fischer D S, Theis F J, Colomé-Tatché M. EpiScanpy: integrated single-cell epigenomic analysis. Nature Communications, 2021, 12(1): 5228
Fang R, Preissl S, Li Y, Hou X, Lucero J, Wang X, Motamedi A, Shiau A K, Zhou X, Xie F, Mukamel E A, Zhang K, Zhang Y, Behrens M M, Ecker J R, Ren B. Comprehensive analysis of single cell ATAC-seq data with SnapATAC. Nature Communications, 2021, 12(1): 1337
Stuart T, Srivastava A, Madad S, Lareau C A, Satija R. Single-cell chromatin state analysis with Signac. Nature Methods, 2021, 18(11): 1333–1341
Granja J M, Corces M R, Pierce S E, Bagdatli S T, Choudhry H, Chang H Y, Greenleaf W J. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nature Genetics, 2021, 53(3): 403–411
Wolf F A, Angerer P, Theis F J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biology, 2018, 19(1): 15
Feng S, Li S, Chen L, Chen S. Unveiling potential threats: backdoor attacks in single-cell pre-trained models. Cell Discovery, 2024, 10(1): 122
Chen S, Yan G, Zhang W, Li J, Jiang R, Lin Z. RA3 is a reference-guided approach for epigenetic characterization of single cells. Nature Communications, 2021, 12(1): 2177
Li S, Zhuang X, Jia S, Tang S, Yan L, Hua H, Jia Y, Zhang X, Zhang Y, Yang Q, Chen S. MultiKano: an automatic cell type annotation tool for single-cell multi-omics data based on Kolmogorov-Arnold network and data augmentation. Protein & Cell, 2024
Tang S, Cui X, Wang R, Li S, Li S, Huang X, Chen S. scCASE: accurate and interpretable enhancement for single-cell chromatin accessibility sequencing data. Nature Communications, 2024, 15(1): 1629
Acknowledgement
This work was supported by the National Natural Science Foundation of China (Grant Nos. 62473212, 62203236) and the Young Elite Scientists Sponsorship Program by CAST [2023QNRC001].
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests The authors declare that they have no competing interests or financial conflicts to disclose.
Additional information
Electronic supplementary material Supplementary material is available in the online version of this article at journal.hep.com.cn and link.springer.com.
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Hua, H., Li, S., Liang, H. et al. Facilitating single-cell chromatin accessibility research with a user-friendly database. Front. Comput. Sci. 19, 1911920 (2025). https://doi.org/10.1007/s11704-025-41390-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11704-025-41390-5