Abstract
Ant colony optimization (ACO) is a metaheuristic for combinatorial optimization problems. In this paper we report on its successful application to the vehicle routing problem (VRP). First, we introduce the VRP and some of its variants, such as the VRP with time windows, the time dependent VRP, the VRP with pickup and delivery, and the dynamic VRP. These variants have been formulated in order to bring the VRP closer to the kind of situations encountered in the real-world.
Then, we introduce the basic principles of ant colony optimization, and we briefly present its application to the solution of the VRP and of its variants.
Last, we discuss the applications of ACO to a number of real-world problems: a VRP with time windows for a major supermarket chain in Switzerland; a VRP with pickup and delivery for a leading distribution company in Italy; a time dependent VRP for freight distribution in the city of Padua, Italy, where the travel times depend on the time of the day; and an on-line VRP in the city of Lugano, Switzerland, where customers’ orders arrive during the delivery process.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aksoy, Y., & Derbez, A. (2003). Software survey: supply chain management. OR/MS Today, 30(3), 1–13.
Albritton, M. D., & McMullen, P. R. (2007). Optimal product design using a colony of virtual ants. European Journal of Operational Research, 176(1), 498–520.
Bianchi, L., Birattari, M., Chiarandini, M., Manfrin, M., Mastrolilli, M., Paquete, L., Rossi-Doria, O., & Schiavinotto, T. (2004). Metaheuristics for the vehicle routing problem with stochastic demands. X. Yao, et al. (Eds.), Lecture notes in computer science : Vol. 3242. Parallel problem solving from nature—PPSN VIII (pp. 450–460). Berlin: Springer.
Blum, C. (2005). Beam-ACO—Hybridizing ant colony optimization with beam search: an application to open shop scheduling. Computers and Operations Research, 32(6), 1565–1591.
Blum, C., & Dorigo, M. (2004). The hyper-cube framework for ant colony optimization. IEEE Transactions on Systems, Man and Cybernetics—Part B: Cybernetics, 34(2), 1161–1172.
Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Computing Surveys, 35(3), 268–308.
Bräysy, O. (2003). A reactive variable neighborhood search for the vehicle routing problem with time windows. INFORMS Journal on Computing, 15(4), 347–368.
Bullnheimer, B., Hartl, R. F., & Strauss, C. (1999). A new rank-based version of the ant system: a computational study. Central European Journal of Operations Research, 7(1), 25–38.
Desaulniers, G., Desrosiers, J., Erdmann, A., Solomon, M. M., & Soumis, F. (2000). VRP with pickup and delivery. In P. Toth & D. Vigo (Eds.), The vehicle routing problem (pp. 225–242). Philadelphia: SIAM.
Donati, A. V., Montemanni, R., Casagrande, N., Rizzoli, A. E., & Gambardella, L. M. (2007, in press). Time dependent vehicle routing problem with a multi ant colony system. European Journal of Operational Research.
Dorigo, M. (1992). Optimization, learning and natural algorithms. PhD thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy.
Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1), 53–66.
Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge: MIT Press.
Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics—Part B: Cybernetics, 26(1), 29–41.
Dorigo, M., Di Caro, G., & Gambardella, L. M. (1999). Ant algorithms for discrete optimization. Artificial Life, 5, 137–172.
Gambardella, L. M., Rizzoli, A. E., & Zaffalon, M. (1998). Simulation and planning of an intermodal container terminal. Simulation, 71(2), 107–116.
Gambardella, L. M., Taillard, É., & Agazzi, G. (1999). MACS-VRPTW: a multiple ant colony system for vehicle routing problems with time windows. In D. Corne, M. Dorigo & F. Glover (Eds.), New ideas in optimization (pp. 63–76). London: McGraw–Hill.
Gendreau, M., & Potvin, J.-Y. (1998). Dynamic vehicle routing and dispatching. In T. G. Crainic & G. Laporte (Eds.), Fleet management and logistic (pp. 115–226). Berlin: Springer.
Gendreau, M., Hertz, A., & Laporte, G. (1994). A tabu search heuristic for the vehicle routing problem. Management Science, 40(10), 1276–1290.
Gendreau, M., Laporte, G., & Séguin, R. (1996). Stochastic vehicle routing. European Journal of Operational Research, 88(1), 3–12.
Glover, F., & Laguna, M. (1997). Tabu search. Boston: Kluwer Academic.
Guntsch, M., & Middendorf, M. (2001). Pheromone modification strategies for ant algorithms applied to dynamic TSP. In E. J. W. Boers et al. (Eds.), Lecture notes in computer science : Vol. 2037. Applications of evolutionary computing: EvoWorkshops 2001: EvoCOP, EvoFlight, EvoIASP, EvoLearn, and EvoSTIM (pp. 213–222), Como, Italy, 18–20 April 2001. Berlin: Springer.
Hartl, R. F., Hasle, G., & Janssens, G. K. (2006). Special issue on rich vehicle routing problems: editorial. Central European Journal of Operations Research, 14(2), 103–104.
Ichoua, S., Gendreau, M., & Potvin, J.-Y. (2003). Vehicle dispatching with time-dependent travel times. European Journal of Operational Research, 144(2), 379–396.
Kallehauge, B., Larsen, J., & Madsen, O. B. G. (2006). Lagrangian duality applied to the vehicle routing problem with time windows. Computers and Operations Research, 33(5), 1464–1487.
Kilby, P., Prosser, P., & Shaw, P. (1999). Guided local search for the vehicle routing problem. In S. Voss, S. Martello, I. H. Osman & C. Roucairol (Eds.), Meta-heuristics: advances and trends in local search paradigms for optimization (pp. 473–486). Boston: Kluwer Academic.
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.
Kytöjoki, J., Nuortio, T., Bräysy, O., & Gendreau, M. (2007). An efficient variable neighborhood search heuristic for very large scale vehicle routing problems. Computers and Operations Research, 34(9), 2743–2757.
Labbé, M., Laporte, G., & Mercure, H. (1991). Capacitated vehicle routing on trees. Operations Research, 39(4), 616–622.
Laporte, G., & Louveaux, F. V. (1998). Solving stochastic routing problems with the integer L-shaped method. In T. G. Crainic & G. Laporte (Eds.), Fleet management and logistics (pp. 159–167). Boston: Kluwer Academic.
Li, Y., & Chan Hilton, A. B. (2007). Optimal groundwater monitoring design using an ant colony optimization paradigm. Environmental Modelling and Software, 22(1), 110–116.
Li, F., Golden, B., & Wasil, E. (2005). Very large-scale vehicle routing: new test problems, algorithms, and results. Computers and Operations Research, 32(5), 1165–1179.
Lourenço, H. R., Martin, O., & Stützle, T. (2003). Iterated local search. In F. Glover & G. Kochenberger (Eds.), Handbook of metaheuristics (pp. 321–353). Boston: Kluwer Academic.
Maniezzo, V., & Carbonaro, A. (2000). ANTS heuristic for the frequency assignment problem. Future Generation Computer Systems, 16(8), 927–935.
Mester, D., & Bräysy, O. (2005). Active guided evolution strategies for the large scale vehicle routing problem with time windows. Computers & Operations Research, 32(6), 1593–1614.
Montemanni, R., Gambardella, L. M., Rizzoli, A. E., & Donati, A. V. (2005). Ant colony system for a dynamic vehicle routing problem. Journal of Combinatorial Optimization, 10, 327–343.
Osman, I. H. (1993). Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem. Annals of Operations Research, 41, 421–451.
Potvin, J.-Y., Xu, Y., & Benyahia, I. (2006). Vehicle routing and scheduling with dynamic travel times. Computers and Operations Research, 33(4), 1129–1137.
Psaraftis, H. (1995). Dynamic vehicle routing: status and prospects. Annals of Operations Research, 61, 143–164.
Psaraftis, H. (1988). Dynamic vehicle routing problems. In B. L. Golden & A. A. Assad (Eds.), Vehicle routing: methods and studies (pp. 223–248). Amsterdam: North-Holland.
Reimann, M., Doerner, K., & Hartl, R. F. (2002). A savings based ant system for the vehicle routing problem. In W. B. Langdon et al. (Eds.), Proceedings of the genetic and evolutionary computation conference (GECCO-2002) (pp. 1317–1325). San Francisco: Kaufmann.
Reimann, M., Doerner, K., & Hartl, R. F. (2003). Analyzing a unified ant system for the VRP and some of its variants. In G. Raidl et al. (Eds.), Lecture notes in computer science : Vol. 2611. Applications of evolutionary computing: EvoWorkshops 2003: EvoBIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB, and EvoSTIM (pp. 300–310), Essex, UK, 14–16 April 2003. Berlin: Springer.
Reimann, M., Doerner, K., & Hartl, R. F. (2004). D-ants: savings based ants divide and conquer the vehicle routing problem. Computers and Operations Research, 31(4), 563–591.
Resende, M. G. C., & Ribeiro, C. C. (2003). Greedy randomized adaptive search procedures. In F. Glover & G. Kochenberger (Eds.), Handbook of metaheuristics (pp. 219–249). Boston: Kluwer Academic.
Savelsbergh, M. W. P. (1985). Local search in routing problems with time windows. Annals of Operations Research, 4, 285–305.
Stützle, T., & Hoos, H. H. (2000). MAX-MIN ant-system. Future Generation Computer Systems, 16(8), 889–914.
Taillard, È. D., Badeau, E. P., Gendreau, M., Guertin, F., & Potvin, J.-Y. (1997). A tabu search heuristic for the vehicle routing problem with soft time windows. Transportation Science, 31(2), 170–186.
Toth, P., & Vigo, D. (2001a). Branch-and-bound algorithms for the capacitated VRP. In P. Toth & D. Vigo (Eds.), The vehicle routing problem (pp. 29–51). Philadelphia: SIAM.
Toth, P., & Vigo, D. (2001b). An overview of vehicle routing problems. In P. Toth & D. Vigo (Eds.), The vehicle routing problem (pp. 1–26). Philadelphia: SIAM.
Toth, P., & Vigo, D. (2003). The granular tabu search and its application to the vehicle routing problem. INFORMS Journal on Computing, 15(4), 333–346.
Van Breedam, A. (1996). An analysis of the effect of local improvement operators in genetic algorithms and simulated annealing for the vehicle routing problem. RUCA Working Paper 96/14, University of Antwerp, Belgium, 1996.
Zecchin, A. C., Maier, H. R., Simpson, A. R., Leonard, M., & Nixon, J. B. (2007). Ant colony optimization applied to water distribution system design: comparative study of five algorithms. Journal of Water Resources Planning and Management, 133(1), 87–92.
Zeimpekis, V., Tarantilis, C. D., Giaglis, G. M., & Minis, I. (2007). Dynamic fleet management—concepts, systems, algorithms & case studies. Berlin: Springer.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rizzoli, A.E., Montemanni, R., Lucibello, E. et al. Ant colony optimization for real-world vehicle routing problems. Swarm Intell 1, 135–151 (2007). https://doi.org/10.1007/s11721-007-0005-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11721-007-0005-x