Skip to main content
Log in

Ant-based and swarm-based clustering

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

Clustering with swarm-based algorithms is emerging as an alternative to more conventional clustering methods, such as hierarchical clustering and k-means. Ant-based clustering stands out as the most widely used group of swarm-based clustering algorithms. Broadly speaking, there are two main types of ant-based clustering: the first group of methods directly mimics the clustering behavior observed in real ant colonies. The second group is less directly inspired by nature: the clustering task is reformulated as an optimization task and general purpose ant-based optimization heuristics are utilized to find good or near-optimal clusterings. This papers reviews both approaches and places these methods in the wider context of general swarm-based clustering approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abraham, A., & Ramos, V. (2003). Web usage mining using artificial ant colony clustering and linear genetic programming. In R. Sarker (Ed.), The 2003 congress on evolutionary computation, CEC 2003 (Vol. 2, pp. 1384–1391). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Albuquerque, P., & Dupuis, A. (2002). A parallel cellular ant colony algorithm for clustering and sorting. In S. Bandini, B. Chopard, & M. Tomassini (Eds.), Lecture notes in computer science : Vol. 2493. Cellular automata: 5th international conference on cellular automata for research and industry, ACRI 2002 (pp. 220–230). Berlin: Springer.

    Google Scholar 

  • Arabie, P., Lawrence, J. H., & Soete, G. D. (1996). Clustering and classification. River Edge: World Scientific.

    MATH  Google Scholar 

  • Azzag, H., Guinot, C., & Venturini, G. (2004). How to use ants for hierarchical clustering. In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, & T. Stützle (Eds.), Lecture notes in computer science : Vol. 3172. Ant colony optimization and swarm intelligence: 4th international workshop, ANTS 2004 (pp. 350–357). Berlin: Springer.

    Google Scholar 

  • Baluja, S., & Caruana, R. (1995). Removing the genetics from the standard genetic algorithm. In A. Prieditis & S. Russel (Eds.), Machine learning, proceedings of the twelfth international conference on machine learning, ICML 1998 (pp. 38–46). San Francisco: Kaufmann.

    Google Scholar 

  • Bilenko, M., Basu, S., & Mooney, R. (2004). Integrating constraints and metric learning in semi-supervised clustering. In R. Greiner & D. Schuurmans (Eds.), Proceedings of the 21st international conference on machine learning, ICML 2004 (pp. 119–126). New York: ACM.

    Google Scholar 

  • Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence—from natural to artificial systems. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Borg, I., & Groenen, P. (1997). Modern multidimensional scaling: theory and applications. New York: Springer.

    MATH  Google Scholar 

  • Campos, M., Bonabeau, E., Theraulaz, G., & Deneubourg, J.-L. (2001). Dynamic scheduling and division of labor in social insects. Adaptive Behaviour, 8(2), 83–92.

    Article  Google Scholar 

  • Chandrasekar, R., & Srinivasan, T. (2007). An improved probabilistic ant based clustering for distributed databases. In M. M. Veloso (Ed.), IJCAI 2007, proceedings of 20th international joint conference on artificial intelligence (pp. 2701–2706). Online proceedings available at http://www.ijcai.org/papers07/contents.php.

  • Channa, A. H., Rajpoot, N. M., & Rajpoot, K. M. (2006). Texture segmentation using ant tree clustering. In 2006 IEEE international conference on engineering of intelligent systems, ICEIS 2006 (pp. 1–6). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Chen, L., Xu, X.-H., & Chen, Y.-X. (2004). An adaptive ant colony clustering algorithm. In Proceedings of the international conference on machine learning and cybernetics, ICMLC 04 (Vol. 3, pp. 1387–1392). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Chen, L., Tu, L., & Chen, H. (2005). A novel ant clustering algorithm with digraph. In L. Wang, K. Chen, & Y. S. Ong (Eds.), Lecture notes in computer science : Vol. 3611. Advances in natural computation first international conference, ICNC 2005 (pp. 1218–1228). Berlin: Springer.

    Google Scholar 

  • Chu, S.-C., Roddick, J. F., Su, C.-J., & Pan, J.-S. (2004). Constrained ant colony optimization for data clustering. In C. Zhang, H. W. Guesgen, & W. K. Yeap (Eds.), Lecture notes in artificial intelligence : Vol. 2417. PRICAI 2004: trends in artificial intelligence: 8th pacific rim international conference on artificial intelligence (pp. 534–543). Berlin: Springer.

    Google Scholar 

  • Cole, R. M. (1998). Clustering with genetic algorithms. Master’s thesis, Department of Computer Science, University of Western Australia, Australia.

  • Cordón, O., Herrera, F., & Stützle, T. (2002). A review on the ant colony optimization metaheuristic: basis, models and new trends. Mathware and Soft Computing, 9(2–3), 141–175.

    MATH  MathSciNet  Google Scholar 

  • Couzin, I., Krause, J., James, R., Ruxton, G., & Franks, N. (2002). Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology, 218, 1–11.

    Article  MathSciNet  Google Scholar 

  • Cui, X., & Potok, T. E. (2005). Document clustering analysis based on hybrid PSO+K-means algorithm. Journal of Computer Sciences, 5, 27–33.

    Google Scholar 

  • Cui, X., Potok, T. E., & Palathingal, P. (2005). Document clustering using particle swarm optimization. In Proceedings of the IEEE swarm intelligence symposium, SIS 2005 (pp. 185–191). Piscataway: IEEE Press.

    Google Scholar 

  • Cui, X., Gao, J., & Potok, T. E. (2006). A flocking based algorithm for document clustering analysis. Journal of Systems Architecture, 52, 505–515.

    Article  Google Scholar 

  • Dasgupta, D. (Ed.). (1999). Artificial immune systems and their applications. Berlin: Springer.

    MATH  Google Scholar 

  • de Castro, L. N., & von Zuben, F. J. (2000). An evolutionary immune network for data clustering. In Proceedings of the Brazilian symposium on neural networks, SBRN 00 (pp. 84–89). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Deneubourg, J.-L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., & Chrétien, L. (1991). The dynamics of collective sorting: robot-like ants and ant-like robots. In J.-A. Meyer & S. Wilson (Eds.), From animals to animats: proceedings of the first international conference on simulation of adaptive behavior (pp. 356–365). Cambridge: MIT Press.

    Google Scholar 

  • Di Battista, G., Eades, P., Tamassia, R., & Tollis, I. (1999). Graph drawing. Upper Saddle River: Prentice Hall.

    Book  MATH  Google Scholar 

  • Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics Part B, 26(1), 29–41.

    Article  Google Scholar 

  • Ekola, T., Laurikkala, M., Lehto, T., & Koivisto, H. (2004). Network traffic analysis using clustering ants. In Proceedings of the world automation congress, WAC 2004 (Vol. 17, pp. 275–280). Piscataway: IEEE Press.

    Google Scholar 

  • Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In E. Simoudis, J. Han, & U. Fayyad (Eds.), Proceedings of the second international conference on knowledge discovery and data mining (pp. 226–231). Menlo Park: AAAI Press.

    Google Scholar 

  • Everitt, B., Laindau, S., & Leese, M. (2001). Cluster analysis (4th ed.). London: Edward Arnold.

    Google Scholar 

  • Folino, G., & Spezzano, G. (2002). An adaptive flocking algorithm for spatial clustering. In J. J. M. Guervós, P. Adamidis, H.-G. Beyer, & J. L. Fernández-Villacañas (Eds.), Lecture notes in computer science : Vol. 2439. Parallel problem solving from nature—PPSN VII (pp. 924–933). Berlin: Springer.

    Google Scholar 

  • Folino, G., Forestiero, A., & Spezzano, G. (2003a). Discovering clusters in spatial data using swarm intelligence. In W. Banzhaf, T. Christaller, P. Dittrich, J. T. Kim, & J. Ziegler (Eds.), Lecture notes in artificial intelligence : Vol. 2801. Advances in artificial life: 7th European conference, ECAL 2003 (pp. 598–605). Berlin: Springer.

    Google Scholar 

  • Folino, G., Forestiero, A., & Spezzano, G. (2003b). Swarming agents for discovering clusters in spatial data. In Proceedings of the international symposium on parallel and distributed computing, ISPDC 03 (pp. 72–79). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Gansner, E., Koren, Y., & North, S. (2004). Graph drawing by stress majorization. In J. Pach (Ed.), Lecture notes in computer science : Vol. 3383. Graph drawing: 12th international symposium, GD 2004 (pp. 239–250). Berlin: Springer.

    Google Scholar 

  • Garey, M., & Johnson, D. (1979). Computers and intractability; a guide to the theory of NP-completeness. New York: Freeman.

    MATH  Google Scholar 

  • Gu, Y., & Hall, L. O. (2006). Kernel based fuzzy ant clustering with partition validity. In Proceedings of the IEEE international conference on fuzzy systems (pp. 263–267). Piscataway: IEEE Press.

    Google Scholar 

  • Handl, J., & Knowles, J. (2007). An evolutionary approach to multiobjective clustering. IEEE Transactions on Evolutionary Computation, 11(1), 56–76.

    Article  Google Scholar 

  • Handl, J., & Meyer, B. (2002). Improved ant-based clustering and sorting in a document retrieval interface. In J. J. Merelo, P. Adamidis, & H.-G. Beyer (Eds.), Lecture notes in computer science : Vol. 2439. Parallel problem solving from nature—PPSN VII (pp. 913–923). Berlin: Springer.

    Google Scholar 

  • Handl, J., Knowles, J., & Kell, D. B. (2005). Computational cluster validation in post-genomic data analysis. Bioinformatics, 21(15), 3201–3212.

    Article  Google Scholar 

  • Handl, J., Knowles, J., & Dorigo, M. (2006). Ant-based clustering and topographic mapping. Artificial Life, 12(1), 35–61.

    Article  Google Scholar 

  • Hartmann, V. (2005). Evolving agent swarms for clustering and sorting. In H.-G. Beyer (Ed.), Proceedings of the genetic and evolutionary computation conference (pp. 217–224). New York: ACM.

    Chapter  Google Scholar 

  • Hoe, K., Lai, W., & Tai, T. (2002). Homogeneous ants for web document similarity modeling and categorization. In M. Dorigo & G. Di (Eds.), Lecture notes in computer science : Vol. 2463. Ant algorithms: third international workshop, ANTS 2002 (pp. 256–261). Berlin: Springer.

    Google Scholar 

  • Jain, A., & Dubes, R. (1988). Algorithms for clustering data. Englewood Cliffs: Prentice Hall.

    MATH  Google Scholar 

  • Jain, A., Murty, M., & Flynn, P. (1999a). Data clustering: a review. ACM Computing Surveys, 31(3), 264–323.

    Article  Google Scholar 

  • Jain, A., Murty, M., & Flynn, P. J. (1999b). Data clustering: a review. ACM Computing Surveys, 31, 264–323.

    Article  Google Scholar 

  • Kanade, P. M., & Hall, L. O. (2003). Fuzzy ants as a clustering concept. In NAFIPS 2003: 22nd international conference of the North American fuzzy information processing society (pp. 227–232). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Kanade, P. M., & Hall, L. O. (2004). Fuzzy ant clustering by centroid positioning. In Proceedings of the IEEE international conference on fuzzy systems (Vol. 1, pp. 371–376). Piscataway: IEEE Press.

    Google Scholar 

  • Kannan, R., Vempala, S., & Vetta, A. (2004). On clusterings: good, bad and spectral. Journal of the ACM, 51(3), 497–515.

    Article  MathSciNet  Google Scholar 

  • Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu, A. Y. (2000). The analysis of a simple k-means clustering algorithm. In Symposium on computational geometry (pp. 100–109). New York: ACM.

    Google Scholar 

  • Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of the IEEE international joint conference on neural networks, IJCNN 95 (pp. 1942–1948). Piscataway: IEEE Press.

    Google Scholar 

  • Kohonen, T. (1997). Self-organizing maps. Berlin: Springer.

    MATH  Google Scholar 

  • Kuntz, P., & Snyers, D. (1994). Emergent colonization and graph partitioning. In D. Cliff, P. Husbands, J.-A. Meyer, & S.W. Wilson (Eds.), From animals to animats 3: proceedings of the third international conference on simulation of adaptive behavior (pp. 494–500). Cambridge: MIT Press.

    Google Scholar 

  • Kuntz, P., & Snyers, D. (1999). New results on an ant-based heuristic for highlighting the organization of large graphs. In Proceedings of the 1999 congress on evolutionary computation, CEC 99 (pp. 1451–1458). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Kuntz, P., Snyers, D., & Layzell, P. (1998). A stochastic heuristic for visualising graph clusters in a bi-dimensional space prior to partitioning. Journal of Heuristics, 5(3), 327–351.

    Article  Google Scholar 

  • Labroche, N., Monmarché, N., & Venturini, G. (2003). Antclust: ant clustering and web usage mining. In E. Cantu-Paz (Ed.), Lecture notes in computer science : Vol. 2723. Genetic and evolutionary computation, GECOO 2003 (pp. 25–36). Berlin: Springer.

    Chapter  Google Scholar 

  • Labroche, N., Guinot, C., & Venturini, G. (2004). Fast unsupervised clustering with artificial ants. In X. Yao, E. Burke, J. A. Lozano, J. Smith, J. J. Merelo-Guervós, J. A. Bullinaria, et al. (Eds.), Lecture notes in computer science : Vol. 3242. Parallel problem solving from nature, PPSN VIII (pp. 1143–1152). Berlin: Springer.

    Google Scholar 

  • Langham, E. (2005). Emergent restructuring of resources in ant colonies: a swarm-based approach to partitioning. In M. Ali & F. Esposito (Eds.), Lecture notes in artificial intelligence : Vol. 3533. Innovations in applied artificial intelligence: 18th international conference on industrial and engineering applications of artificial intelligence and expert systems (pp. 638–647). Berlin: Springer.

    Google Scholar 

  • Larrañaga, P., & Lozano, J. (2002). Genetic algorithms and evolutionary computation: Vol. 2. Estimation of distribution algorithms: a new tool for evolutionary computation. Boston: Kluwer Academic.

    Google Scholar 

  • Li, Q., Shi, Z., Shi, J., & Shi, Z. (2005). Swarm intelligence clustering algorithm based on attractor. In L. Wang, K. Chen, & Y.-S. Ong (Eds.), Lecture notes in computer science : Vol. 3612. Advances in natural computation, first international conference, ICNC 2005 (pp. 496–504). Berlin: Springer.

    Google Scholar 

  • Lumer, E., & Faieta, B. (1994). Diversity and adaptation in populations of clustering ants. In D. Cliff, P. Husbands, J.-A. Meyer, & S. W. Wilson (Eds.), From animals to animats 3: proceedings of the third international conference on simulation of adaptive behavior (pp. 501–508). Cambridge: MIT Press.

    Google Scholar 

  • Macgill, J. (2000). Using flocks to drive a geographic analysis machine. In M. Bedau, J. S. McCaskill, N. H. Packard, S. Rasmussen, J. McCaskill, & N. Packard (Eds.), Artificial life VII: proceedings of the seventh international conference on artificial life (pp. 446–453). Cambridge: MIT Press.

    Google Scholar 

  • MacQueen, L. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (pp. 281–297). Berkeley: University of California Press.

    Google Scholar 

  • Melhuish, C., Sendova-Franks, A. B., & Scholes, S. (2006). Ant inspired sorting by robots: the importance of initial clustering. Journal of the Royal Society Interface, 3(7), 235–242.

    Article  Google Scholar 

  • Merkle, D., Middendorf, M., & Scheidler, A. (2004). Decentralized packet clustering in networks. In Proceedings of the 18th international parallel and distributed processing symposium, IPDPS 2004 (pp. 163–170). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Moere, A. V., & Clayden, J. J. (2005). Cellular ants: combining ant-based clustering with cellular automata. In 17th IEEE international conference on tools with artificial intelligence, ICTAI 2005 (pp. 177–184). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Monmarché, N. (2000). Algorithmes de fourmis artificielles: applications à la classification et à l’optimisation. PhD thesis, Laboratoire d’Informatique, Université de Tours, France.

  • Monmarché, N., Slimane, M., & Venturini, G. (1999). On improving clustering in numerical databases with artificial ants. In D. Floreano, J.-D. Nicoud, & F. Mondada (Eds.), Lecture notes in artificial intelligence : Vol. 1674. Advances in artificial life: 5th European conference, ECAL 99 (pp. 626–635). Berlin: Springer.

    Google Scholar 

  • Monmarché, N., Ramat, E., Desbarats, L., & Venturini, G. (2000). Probabilistic search with genetic algorithms and ant colonies. In A. S. Wu (Ed.), Workshop on optimization by building and using probabilistic models, GECCO 2000 (pp. 209–211).

  • Montes de Oca, M. A., Garrido, L., & Aguirre, J. L. (2005). Effects of inter-agent communication in ant-based clustering algorithms: a case study on communication policies in swarm systems. In A. Gelbukh & H. Terashima (Eds.), Lecture notes in artificial intelligence : Vol. 3789. MICAI 2005: advances in artificial intelligence: 4th Mexican international conference on artificial intelligence (pp. 254–263). Berlin: Springer.

    Google Scholar 

  • Mühlenbein, H. (1998). The equation for response to selection and its use for prediction. Evolutionary Computation, 5, 303–346.

    Google Scholar 

  • Ng, A. Y., Jordan, M., & Weiss, Y. (2001). On spectral clustering: analysis and an algorithm. In T. Diettrich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems 14: proceedings of the 2001 neural information processing systems (NIPS) conference (pp. 849–856). Cambridge: MIT Press.

    Google Scholar 

  • Omran, M., Salman, A., & Engelbrecht, A. (2002). Image classification using particle swarm optimization. In L. Wang, K. C. Tan, T. Furuhashi, J.-H. Kim, & X. Yao (Eds.), Proceedings of the fourth Asia-pacific conference on simulated evolution and learning, SEAL’02 (pp. 370–374). Piscataway: IEEE Press.

    Google Scholar 

  • Openshaw, S., & Macgill, J. (1998). The use of flocks to drive a geographical analysis machine. In R. J. Abrahart (Ed.), GeoComputation 98, proceedings of the 3rd international conference on geocomputation. GeoComputation CD-ROM.

  • Parpinelli, S., Lopes, S., & Freitas, A. (2002). Data mining with an ant colony optimization algorithm. IEEE Transactions on Evolutionary Computation, 6, 321–332.

    Article  Google Scholar 

  • Parpinelli, S., Lopes, S., & Freitas, A. (2005). Classification-rule discovery with an ant colony algorithm. In Proceedings of the IEEE/WIC international conference on intelligent agent technology (pp. 420–424). Piscataway: IEEE Press.

    Google Scholar 

  • Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization—an overview. Swarm Intelligence, 1(1), 33–57.

    Article  Google Scholar 

  • Proctor, G., & Winter, C. (1998). Information flocking: data visualization in virtual worlds using emergent behaviours. In J.-C. Heudin (Ed.), Lecture notes in computer science : Vol. 1434. Proceedings of the international conference on virtual worlds (pp. 168–176). Berlin: Springer.

    Chapter  Google Scholar 

  • Ramos, V., & Abraham, A. (2005). Antids: self-organized ant-based clustering model for intrusion detection system. In A. Abraham, Y. Dote, T. Furuhashi, M. Köppen, A. Ohuchi, & Y. Ohsawa (Eds.), Springer engineering series : Vol. 29. Soft computing as transdisciplinary science and technology: proceedings of the fourth IEEE international workshop WSTST 05 (pp. 977–986). Berlin: Springer.

    Google Scholar 

  • Ramos, V., & Merelo, J. (2002). Self-organized stigmergic document maps: environments as a mechanism for context learning. In Proceedings of the first Spanish conference on evolutionary and bio-inspired algorithms (pp. 284–293). Mérida: Centro Univ. Mérida.

    Google Scholar 

  • Rayward-Smith, V. J. (2005). Metaheuristics for clustering in KDD. In Proceedings of the 2005 IEEE congress on evolutionary computation (Vol. 3, pp. 2380–2387). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Reynolds, C. W. (1987). Flocks, herds, and schools: a distributed behavioral model. Computer Graphics, 21(4), 25–34.

    Article  MathSciNet  Google Scholar 

  • Roure, J., Larrañaga, P., & Sangüesa, R. (2002). An empirical comparison between k-means, GAs and EDAs in partitional clustering. In P. Larrañaga & J. A. Lozan (Eds.), Estimation of distribution algorithms, Chap. 17. Norwell: Kluwer Academic.

    Google Scholar 

  • Runkler, T. A. (2005). Ant colony optimization of clustering models. International Journal of Intelligent Systems, 20(12), 1233–1251.

    Article  MATH  Google Scholar 

  • Saatchi, S., & Hung, C. C. (2005). Hybridization of the ant colony optimization with the k-means algorithm for clustering. In Lecture notes in computer science : Vol. 3540. Image analysis. Berlin: Springer.

    Google Scholar 

  • Schockaert, S., Cock, M. D., Cornelis, C., & Kerre, E. E. (2004a). Efficient clustering with fuzzy ants. In D. Ruan, P. D’hondt, M. D. Cock, M. Nachtegael, & E. E. Kerre (Eds.), Applied computational intelligence, proceedings of the 6th international FLINS conference (pp. 195–200). River Edge: World Scientific.

    Chapter  Google Scholar 

  • Schockaert, S., Cock, M. D., Cornelis, C., & Kerre, E. E. (2004b). Fuzzy ant based clustering. In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, & T. Stützle (Eds.), Lecture notes in computer science : Vol. 3172. Ant colony optimization and swarm intelligence, 4th international workshop, ANTS 2004 (pp. 342–349). Berlin: Springer.

    Google Scholar 

  • Scholes, S., & Wilson, M. (2004). Comparisons in evolution and engineering: the collective intelligence of sorting. Adaptive Behavior, 12(3–4), 147–159.

    Article  Google Scholar 

  • Sendova-Franks, A. B., Scholes, S. R., Franks, N. R., & Melhuish, C. (2004). Brood sorting by ants: two phases and differential diffusion. Animal Behaviour, 68, 1095–1106.

    Article  Google Scholar 

  • Theoridis, S., & Koutrumbas, K. (2006). Pattern recognition (3rd ed.). New York: Academic Press.

    Google Scholar 

  • Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63, 411–423.

    Article  MATH  MathSciNet  Google Scholar 

  • Timmis, J., & Neal, M. (2001). A resource limited artificial immune system for data analysis. Knowledge-based Systems, 14, 121–130.

    Article  Google Scholar 

  • Timmis, J., Neal, M., & Hunt, J. (1999). Data analysis using artificial immune systems, cluster analysis and Kohonen networks: some comparisons. In Proceedings of the IEEE international conference on systems, man, and cybernetics (Vol. 3, pp. 922–927). Piscataway: IEEE Press.

    Google Scholar 

  • Timmis, J., Neal, M., & Hunt, J. (2000). An artificial immune systems for data analysis. BioSystems, 55, 143–150.

    Article  Google Scholar 

  • Tsai, C.-F., Wu, H.-C., & Tsai, C.-W. (2002). A new clustering approach for data mining in large databases. In Proceedings of the international symposium on parallel architectures, algorithms and networks (pp. 278–283). Piscataway: IEEE Press.

    Google Scholar 

  • Tsang, W., & Kwong, S. (2005). Unsupervised anomaly intrusion detection using ant colony clustering model. In A. Abraham, Y. Dote, T. Furuhashi, M. Köppen, A. Ohuchi, & Y. Ohsawa (Eds.), Springer engineering series : Vol. 29. Soft computing as transdisciplinary science and technology: proceedings of the fourth IEEE international workshop, WSTST 05 (pp. 223–232). Berlin: Springer.

    Google Scholar 

  • van der Merwe, D., & Engelbrecht, A. (2003). Data clustering using particle swarm optimization. In Proceedings of the 2003 congress on evolutionary computation (pp. 215–220). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Vande Moere, A. (2004). Information flocking: time-varying data visualization using boid behaviors. In Proceedings of the eighth international conference on information visualization (pp. 409–414). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Vik, A. H. (2005). Evolving annular sorting in ant-like agents. In M. Capcarrere, A. A. Freitas, P. J. Bentley, C. G. Johnson, & J. Timmis (Eds.), Lecture notes in artificial intelligence : Vol. 3630. Advances in artificial life: 8th European conference, ECAL 2005 (pp. 594–603). Berlin: Springer.

    Google Scholar 

  • Vizine, A. L., de Castro, L. N., & Gudwin, R. R. (2005a). Text document classification using swarm intelligence. In International conference on the integration of knowledge intensive multi-agent systems (pp. 134–139). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Vizine, A. L., de Castro, L. N., Hruschka, E. R., & Gudwin, R. R. (2005b). Towards improving clustering ants: an adaptive ant clustering algorithm. Informatica, 29, 143–154.

    MATH  Google Scholar 

  • Vorhees, E. (1985). The effectiveness and efficiency of agglomerative hierarchical clustering in document retrieval. PhD thesis, Department of Computer Science, Cornell University, Ithaca, NY.

  • Zlochin, M., Birattari, M., Meuleau, N., & Dorigo, M. (2004). Model-based search for combinatorial optimization: a critical survey. Annals of Operations Research, 131, 373–395.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Handl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Handl, J., Meyer, B. Ant-based and swarm-based clustering. Swarm Intell 1, 95–113 (2007). https://doi.org/10.1007/s11721-007-0008-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-007-0008-7

Keywords

Navigation