Abstract
It is a characteristic of swarm robotics that modelling the overall swarm behaviour in terms of the low-level behaviours of individual robots is very difficult. Yet if swarm robotics is to make the transition from the laboratory to real-world engineering realisation such models would be critical for both overall validation of algorithm correctness and detailed parameter optimisation. We seek models with predictive power: models that allow us to determine the effect of modifying parameters in individual robots on the overall swarm behaviour. This paper presents results from a study to apply the probabilistic modelling approach to a class of wireless connected swarms operating in unbounded environments. The paper proposes a probabilistic finite state machine (PFSM) that describes the network connectivity and overall macroscopic behaviour of the swarm, then develops a novel robot-centric approach to the estimation of the state transition probabilities within the PFSM. Using measured data from simulation the paper then carefully validates the PFSM model step by step, allowing us to assess the accuracy and hence the utility of the model.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Agassounon, W., Martinoli, A., & Goodman, R. M. (2001). A scalable, distributed algorithm for allocating workers in embedded systems. In Proceedings of the IEEE conference on systems, man and cybernetics (pp. 3367–3373). Piscataway: IEEE Press.
Agassounon, W., Martinoli, A., & Easton, K. (2004). Macroscopic modelling of aggregation experiments using embodied agents in teams of constant and time-varying sizes. Autonomous Robots, 17(2–3), 163–192.
Beni, G. (2005). From swarm intelligence to swarm robotics. In E. Şahin & W. M. Spears (Eds.), Lecture notes in computer science : Vol. 3342. Swarm robotics—SAB 2004 international workshop (pp. 1–9). Berlin: Springer.
Berman, S., Halasz, A., Kumar, V., & Pratt, S. (2007). Algorithms for the analysis and synthesis of a bio-inspired swarm robotic system. In E. Şahin, W. M. Spears, & A. F. T. Winfield (Eds.), Lecture notes in computer science : Vol. 4433. Swarm robotics—second SAB 2006 international workshop (pp. 56–70). Berlin: Springer.
Correll, N., & Martinoli, A. (2004). Modelling and optimisation of a swarm-intelligent inspection system. In R. Alami, H. Asama, & R. Chatila (Eds.), Proceedings of the 7th symposium on distributed autonomous robotic systems (DARS’04) (pp. 369–378). Berlin: Springer.
Gerkey, B., Vaughan, R., & Howard, A. (2003). The player/stage project: tools for multi-robot and distributed sensor systems. In Proceedings of the 11th international conference on advanced robotics (pp. 317–323). Piscataway: IEEE Press.
Ijspeert, A., Martinoli, A., Billard, A., & Gambardella, L. (2001). Collaboration through the exploitation of local interactions in autonomous collective robotics: the stick pulling experiment. Autonomous Robots, 11(2), 149–171.
Kazadi, S., Chung, M., Lee, B., & Cho, R. (2004). On the dynamics of puck clustering systems. Robotics and Autonomous Systems, 46(1), 1–27.
Lerman, K., & Galstyan, A. (2002). Mathematical model of foraging in a group of robots: effect of interference. Autonomous Robots, 13(2), 127–141.
Lerman, K., Galstyan, A., Martinoli, A., & Ijspeert, A. (2002). A macroscopic analytical model of collaboration in distributed robotic systems. Artificial Life, 7, 375–393.
Lerman, K., Martinoli, A., & Galstyan, A. (2005). A review of probabilistic macroscopic models for swarm robotic systems. In E. Şahin & W. M. Spears (Eds.), Lecture notes in computer science : Vol. 3342. Swarm robotics—SAB 2004 international workshop (pp. 143–152). Berlin: Springer.
Martinoli, A., Ijspeert, A. J., & Mondada, F. (1999). Understanding collective aggregation mechanisms: from probabilistic modelling to experiments with real robots. Robotics and Autonomous Systems, 29(1), 51–63.
Martinoli, A., Easton, K., & Agassounon, W. (2004). Modeling swarm robotic systems: a case study in collaborative distributed manipulation. International Journal of Robotics Research, 23(4), 415–436.
Milutinovic, D., & Lima, P. (2006). Modeling and optimal centralized control of a large-size robotic population. IEEE Transactions on Robotics, 22(6), 1280–1285.
Nembrini, J. (2005). Minimalist coherent swarming of wireless networked autonomous mobile robots. PhD thesis, University of the West of England, Bristol, UK.
Nembrini, J., Winfield, A. F. T., & Melhuish, C. (2002). Minimalist coherent swarming of wireless networked autonomous mobile robots. In From animals to animats (SAB’02) (pp. 373–382). Cambridge: MIT Press.
Rouff, C., Truszkowski, W., Rash, J., & Hinchey, M. (2003). Formal approaches to intelligent swarms. In IEEE/NASA software engineering workshop (SEW’03) (pp. 51–57). Los Alamitos: IEEE Computer Society.
Şahin, E. (2005). Swarm robotics: from sources of inspiration to domains of application. In E. Şahin & W. M. Spears (Eds.), Lecture notes in computer science : Vol. 3342. Swarm robotics—SAB 2004 international workshop (pp. 10–20). Berlin: Springer.
Støy, K. (2001). Using situated communication in distributed autonomous mobile robotics. In Proceedings of the 7th Scandinavian conference on artificial intelligence (pp. 44–52). Amsterdam: IOS.
Truszkowski, W., Hinchey, M., Rash, J., & Rouff, C. (2004). NASA’s swarm missions: the challenge of building autonomous software. IT Professional, 6(5), 47–52.
Winfield, A. F. T., & Holland, O. (2000). The application of wireless local area network technology to the control of mobile robots. Microprocessors and Microsystems, 23, 597–607.
Winfield, A. F. T., & Nembrini, J. (2006). Safety in numbers: fault-tolerance in robot swarms. International Journal of Modelling, Identification and Control, 1(1), 30–37.
Winfield, A. F. T., Harper, C., & Nembrini, J. (2006). Towards the application of swarm intelligence in safety-critical applications. In Proceedings of the 1st IET international conference on system safety (pp. 89–95). London: IET.
Author information
Authors and Affiliations
Corresponding author
Electronic Supplementary Material
Video file
Rights and permissions
About this article
Cite this article
Winfield, A.F.T., Liu, W., Nembrini, J. et al. Modelling a wireless connected swarm of mobile robots. Swarm Intell 2, 241–266 (2008). https://doi.org/10.1007/s11721-008-0018-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11721-008-0018-0