Abstract
Multiple Objective Optimisation is a fast growing area of research, and consequently several Ant Colony Optimisation approaches have been proposed for a variety of these problems. In this paper, a taxonomy for Multiple Objective Ant Colony Optimisation algorithms is proposed and many existing approaches are reviewed and described using the taxonomy. The taxonomy offers guidelines for the development and use of Multiple Objective Ant Colony Optimisation algorithms.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Angus, D. (2007). Crowding population-based ant colony optimisation for the multi-objective travelling salesman problem. In 2007 IEEE symposium on computational intelligence in multi-criteria decision-making (MCDM 2007) (pp. 333–340). New York: IEEE Press.
Barán, B., & Schaerer, M. (2003). A multiobjective ant colony system for vehicle routing problem with time windows. In Proceedings of the 21st IASTED international conference on applied informatics (pp. 97–102). Calgary: ACTA Press.
Bilchev, G., & Parmee, I. C. (1995). The ant colony metaphor for searching continuous design spaces. In T. C. Fogarty (Ed.), LNCS : Vol. 993. Proceedings of the AISB workshop on evolutionary computation (pp. 25–39). Berlin: Springer.
Cardoso, P., Jesus, M., & Márquez, A. (2003). MONACO—multi-objective network optimisation based on ACO. In F. S. Leal & D. Orden (Eds.), Encuentros de geometría computacional. Santander: Universidad de Cantabria.
Corne, D. W., Jerram, N. R., Knowles, J. D., & Oates, M. J. (2001). PESA-II: Region-based selection in evolutionary multiobjective optimization. In L. Spector, E. D. Goodman, A. Wu, W. Langdon, H. M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, & E. Burke (Eds.), Proceedings of the genetic and evolutionary computation conference (GECCO’2001) (pp. 283–290). San Mateo: Morgan Kaufmann.
Das, I., & Dennis, J. (1996). A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems (Technical Report 96–36). Houston: Rice University, Dept. Of Computational and Applied Mathematics.
Deb, K. (2002). Wiley-Interscience series in systems and optimization. Multi-objective optimization using evolutionary algorithms (2nd ed.). New York: Wiley.
Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, & H. P. Schwefel (Eds.), LNCS : Vol. 1917. Parallel problem solving from nature (PPSN VI) (pp. 849–858). Berlin: Springer.
Doerner, K., Hartl, R., & Teimann, M. (2003). Are COMPETants more competent for problem solving? The case of full truckload transportation. Central European Journal of Operations Research (CEJOR), 11(2), 115–141.
Doerner, K., Gutjahr, W. J., Hartl, R. F., Strauss, C., & Stummer, C. (2004). Pareto ant colony optimization: A metaheuristic approach to multiobjective portfolio selection. Annals of Operations Research, 131(14), 79–99.
Dorigo, M., & Di Caro, G. (1999). The ant colony optimization meta-heuristic. In D. Corne, M. Dorigo, & F. Glover (Eds.), New ideas in optimisation (pp. 11–32). London: McGraw-Hill.
Dorigo, M., & Gambardella, L. (1997). Ant colonies for the traveling salesman problem. Biosystems, 43, 73–81.
Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge: MIT Press.
Dorigo, M., Di Caro, G., & Gambardella, L. M. (1999). Ant algorithms for discrete optimization. Artificial Life, 5, 137–172.
Fonseca, C. M., & Fleming, P. J. (1996). On the performance assessment and comparison of stochastic multiobjective optimizers. In H. M. Voigt, W. Ebeling, I. Rechenberg, & H. P. Schwefel (Eds.), LNCS : Vol. 1141. Proceedings of the 4th international conference on parallel problem solving from nature (PPSN IV) (pp. 584–593). Berlin: Springer.
Gambardella, L. M., Taillard, E., & Agazzi, G. (1999). MACS-VRPTW: A multiple ant colony system for vehicle routing problems with time windows. In D. Corne, M. Dorigo, & F. Glover (Eds.), New ideas in optimisation (pp. 63–76). London: McGraw-Hill.
Garcìa-Martínez, C., Cordón, O., & Herrera, F. (2007). A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for bi-criteria TSP. European Journal of Operational Research, 180(1), 116–148.
Gravel, M., Price, W. L., & Gagné, C. (2002). Scheduling continuous casting of aluminum using a multiple-objective ant colony optimization metaheuristic. European Journal of Operations Research, 143(1), 218–229.
Guntsch, M. (2004). Ant algorithms in stochastic and multi-criteria environments. Ph.D. thesis, Universität Fridericiana zu Karlsruhe, Germany.
Guntsch, M., & Middendorf, M. (2003). Solving multi-criteria optimization problems with population-based ACO. In G. Goos, J. Hartmanis, & J. van Leeuwen (Eds.), LNCS : Vol. 2632. Proceedings of the second international conference on evolutionary multi-criterion optimization (EMO 2003) (pp. 464–478). Berlin: Springer.
Horn, J., Nafpliotis, N., & Goldberg, D. E. (1994). A niched Pareto genetic algorithm for multiobjective optimization. In IEEE world congress on computational intelligence : Vol. 1. Proceedings of the first IEEE conference on evolutionary computation (pp. 82–87). New York: IEEE Press.
Hwang, C. L., & Masud, A. S. M. (1979). Lecture notes in economics and mathematical systems: Vol. 164. Multiple objective decision making, methods and applications: a state-of-the-art survey. Heidelberg: Springer.
Iredi, S., Merkle, D., & Middendorf, M. (2001). Bi-criterion optimization with multi colony ant algorithms. In E. Zitzler, K. Deb, L. Thiele, C. C. Coello, & D. Corne (Eds.), LNCS : Vol. 1993. First international conference on evolutionary multi-criterion optimization (pp. 359–372). Berlin: Springer.
Knowles, J. (2005). A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers. In H. Kwasnicka & M. Paprzycki (Eds.), ISDA ’05: Proceedings of the 5th international conference on intelligent systems design and applications (pp. 552–557). Los Alamitos: IEEE Computer Society.
Knowles, J. D., & Corne, D. W. (2000). Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary Computation, 8(2), 149–172.
Knowles, J. D., Thiele, L., & Zitzler, E. (2006) A tutorial on the performance assessment of stochastic multiobjective optimizers (Technical Report TIK Report No. 214). Switzerland: Computer Engineering and Networks Laboratory, ETH Zurich.
López-Ibáñez, M., Paquete, L., & Stützle, T. (2004). On the design of ACO for the biobjective quadratic assignment problem. In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, & T. Stützle (Eds.), LNCS : Vol. 3172. ANTS’2004, Fourth international workshop on ant algorithms and swarm intelligence (pp. 214–225). Berlin: Springer.
Maniezzo, V., & Carbonaro, A. (1999). Ant colony optimization: an overview. In P. Hansen & C. Ribeiro (Eds.), Proceedings of the third metaheuristics international conference (MIC’99) (pp. 21–44). Dordrecht: Kluwer Academic.
McMullen, P. R. (2001). An ant colony optimization approach to addressing a JIT sequencing problem with multiple objectives. Artificial Intelligence in Engineering, 15(3), 309–317.
Purshouse, R. C., & Fleming, P. J. (2003). Conflict, harmony, and independence: Relationships in evolutionary multi-criterion optimisation. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, & L. Thiele (Eds.), LNCS : Vol. 2632. Proceedings of the second international evolutionary multi-criterion optimization conference (EMO 2003) (pp. 16–30). Berlin: Springer.
Romero, C. E. M., & Manzanares, E. M. (1999). MOAQ an Ant-Q algorithm for multiple objective optimization problems. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, & R. E. Smith (Eds.), Genetic and evolutionary computing conference (GECCO 99) (Vol. 1, pp. 894–901). San Mateo: Morgan Kaufmann.
Shelokar, P. S., Jayaraman, V. K., & Kulkarni, B. D. (2002). Ant algorithm for single and multiobjective reliability optimization problems. Quality and Reliability Engineering International, 18(6), 497–514.
Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European Journal of Operations Research, 185(3), 1155–1173.
Srinivas, N., & Deb, K. (1994). Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 2(3), 221–248.
Stützle, T., & Hoos, H. (2000). \(\mathcal{MAX}\) – \(\mathcal{MIN}\) ant system. Future Generation Computer Systems, 16(8), 889–914.
T’kindt, V., Monmarché, N., Tercinet, F., & Laügt, D. (2002). An ant colony optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem. European Journal of Operational Research, 142(2), 250–257.
Van Veldhuizen, D. A. (1999) Multiobjective evolutionary algorithms: classifications, analyses, and new innovations. Ph.D. thesis, Department of Electrical and Computer Engineering. Graduate School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, OH.
Zitzler, E., & Künzli, S. (2004). Indicator-based selection in multiobjective search. In X. Yao, E. Burke, J. A. Lozano, J. Smith, & J. J. Merelo-Guervos (Eds.), LNCS : Vol. 3242. Proceedings of the 8th international conference on parallel problem solving from nature (PPSN VIII) (pp. 832–842). Berlin: Springer.
Zitzler, E., Laumanns, M., & Thiele, L. (2002) SPEA2: Improving the strength Pareto evolutionary algorithm. In: K. Giannakoglou, D. Tsahalis, J. Periaux, P. Papailou, T. Fogarty (Eds.), EUROGEN 2001, evolutionary methods for design, optimization and control with applications to industrial problems, international center for numerical methods in engineering (CIMNE), Barcelona, Spain (pp. 95–100).
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., & Fonseca, V. (2003). Performance assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation, 7(2), 117–132.
Zitzler, E., Brockhoff, D., & Thiele, L. (2007). The hypervolume indicator revisited: On the design of Pareto-compliant indicators via weighted integration. In S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, & T. Murata (Eds.), LNCS : Vol. 4403. Proceedings of the forth international evolutionary multi-criterion optimization conference (EMO 2007) (pp. 862–876). Berlin: Springer.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Angus, D., Woodward, C. Multiple objective ant colony optimisation. Swarm Intell 3, 69–85 (2009). https://doi.org/10.1007/s11721-008-0022-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11721-008-0022-4