Skip to main content
Log in

Metaheuristics for the bi-objective orienteering problem

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

In this paper, heuristic solution techniques for the multi-objective orienteering problem are developed. The motivation stems from the problem of planning individual tourist routes in a city. Each point of interest in a city provides different benefits for different categories (e.g., culture, shopping). Each tourist has different preferences for the different categories when selecting and visiting the points of interests (e.g., museums, churches). Hence, a multi-objective decision situation arises. To determine all the Pareto optimal solutions, two metaheuristic search techniques are developed and applied. We use the Pareto ant colony optimization algorithm and extend the design of the variable neighborhood search method to the multi-objective case. Both methods are hybridized with path relinking procedures. The performances of the two algorithms are tested on several benchmark instances as well as on real world instances from different Austrian regions and the cities of Vienna and Padua. The computational results show that both implemented methods are well performing algorithms to solve the multi-objective orienteering problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archetti, C., Hertz, A., & Speranza, M. G. (2007). Metaheuristics for the team orienteering problem. Journal of Heuristics, 13(1), 49–76.

    Article  Google Scholar 

  • Chao, I.-M., Golden, B. L., & Wasil, E. A. (1996a). A fast and effective heuristic for the orienteering problem. European Journal of Operations Research, 88(3), 475–489.

    Article  MATH  Google Scholar 

  • Chao, I.-M., Golden, B. L., & Wasil, E. A. (1996b). The team orienteering problem. European Journal of Operational Research, 88(3), 464–474.

    Article  MATH  Google Scholar 

  • Coello Coello, C. A., Van Veldhuizen, D. A., & Lamont, G. B. (2007). Evolutionary algorithms for solving multi-objective problems (2nd ed.). Genetic algorithms and evolutionary computation (Vol. 5, pp. 88–113) New York: Springer. Chap. 2

    MATH  Google Scholar 

  • Croes, G. A. (1958). A method for solving traveling-salesman problems. Operations Research, 6(6), 791–812.

    Article  MathSciNet  Google Scholar 

  • Czyzak, P., & Jaszkiewicz, A. (1996). A multiobjective metaheuristic approach to the localization of a chain of petrol stations by the capital budgeting model. Control and Cybernetics, 25(1), 177–187.

    MATH  Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  • Doerner, K. F., Gutjahr, W. J., Hartl, R. F., Strauss, C., & Stummer, C. (2004). Pareto ant colony optimization: A metaheuristic approach to multiobjective portfolio selection. Annals of Operations Research, 131(1), 79–99.

    Article  MATH  MathSciNet  Google Scholar 

  • Doerner, K. F., Gutjahr, W. J., Hartl, R. F., Strauss, C., & Stummer, C. (2006a). Nature-inspired metaheuristics for multiobjective activity crashing. Omega, 36(6), 1019–1037.

    Article  Google Scholar 

  • Doerner, K. F., Gutjahr, W. J., Hartl, R. F., Strauss, C., & Stummer, C. (2006b). Pareto ant colony optimization in multiobjective project portfolio selection with ilp preprocessing. European Journal of Operations Research, 171(3), 830–841.

    Article  MATH  MathSciNet  Google Scholar 

  • Doerner, K. F., Focke, A., & Gutjahr, W. J. (2007). Multicriteria tour planning for mobile healthcare facilities in a developing country. European Journal of Operational Research, 179(3), 1078–1096.

    Article  MATH  Google Scholar 

  • Dorigo, M., & Di Caro, G. (1999). The ant colony optimization meta-heuristic. In D. Corne, M. Dorigo, & F. Glover (Eds.), New ideas in optimization (pp. 11–32). London: McGraw-Hill. Chap. 2.

    Google Scholar 

  • Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach to the travelling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1), 53–66.

    Article  Google Scholar 

  • Dorigo, M., & Stuetzle, T. (2004). Ant colony optimization. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Ehrgott, M., & Gandibleux, X. (2000). A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spektrum, 22(4), 425–460.

    MATH  MathSciNet  Google Scholar 

  • Ehrgott, M., & Gandibleux, X. (2004). Approximative solution methods for multiobjective combinatorial optimization. TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, 12(1), 1–63.

    MATH  MathSciNet  Google Scholar 

  • Feillet, D., Dejax, P., & Gendreau, M. (2005). Travelling salesman problems with profits. Transportation Science, 39(2), 188–205.

    Article  Google Scholar 

  • Garcia-Martinez, C., Cordon, O., & Herrera, F. (2007). A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for bi-criteria TSP. European Journal of Operational Research, 180(1), 116–148.

    Article  MATH  Google Scholar 

  • Glover, F., & Laguna, M. (1997). Tabu search. Norwell: Kluwer Academic.

    MATH  Google Scholar 

  • Glover, F., Laguna, M., & Martí, R. (2003). Scatter search and path relinking: Advances and applications. In F. Glover & G. A. Kochenberger (Eds.), International series in operations research and management science : Vol. 57. Handbook of Metaheuristics (pp. 1–35). New York: Springer.

    Google Scholar 

  • Grunert da Fonseca, V., Fonseca, C. M., & Hall, A. O. (2001). Inferential performance assessment of stochastic optimisers and the attainment function. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello, & D. Corne (Eds.), Lecture notes in computer science : Vol. 1993. First International Conference on Evolutionary Multi-Criterion Optimization (pp. 213–225). New York: Springer.

    Google Scholar 

  • Hansen, M. P., & Jaszkiewicz, A. (1998). Evaluating the quality of approximations to the non-dominated set (Technical Report IMM-REP-1998-7). Technical University of Denmark, Kgs. Lyngby, Denmark.

  • Jozefowiez, N., Glover, F., & Laguna, M. (2008). Multi-objective meta-heuristics for the traveling salesman problem with profits. Journal of Mathematical Modelling and Algorithms, 7(2), 177–195.

    Article  MATH  MathSciNet  Google Scholar 

  • Kindervater, G. A. P., & Savelsbergh, M. W. P. (1997). Vehicle routing: Handling edge exchanges. In E. Aarts & J. K. Lenstra (Eds.), Local search in combinatorial optimization (pp. 311–336). Chichester: Wiley.

    Google Scholar 

  • Knowles, J. D., Thiele, L., & Zitzler, E. (2006). A tutorial on the performance assessment of stochastic multiobjective optimizers (Technical Report 214). Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Switzerland, February 2006.

  • Mladenović, N. (1995). A variable neighborhood algorithm: A new metaheuristic for combinatorial optimization. In Abstract of papers presented at Optimization Days, p. 112, Montréal, Canada, 1995.

  • Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers and Operations Research, 24(11), 1097–1100.

    Article  MATH  MathSciNet  Google Scholar 

  • Pasia, J. M., Hartl, R. F., & Doerner, K. F. (2006). Solving a bi-objective flowshop scheduling problem by Pareto-ant colony optimization. In M. Dorigo, L. M. Gambardella, M. Birattari, A. Martinoli, R. Poli, & T. Stützle (Eds.), Lecture notes in computer science : Vol. 4150. Ant colony optimization and swarm intelligence (pp. 294–305). Berlin: Springer.

    Chapter  Google Scholar 

  • Pasia, J. M., Gandibleux, X., Hartl, R. F., & Doerner, K. F. (2007). Local search guided by path relinking and heuristic bounds. In S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, & T. Murata (Eds.), Lecture notes in computer science : Vol. 4403. Evolutionary multi-criterion optimization (pp. 501–515). Berlin: Springer.

    Chapter  Google Scholar 

  • Schott, J. R. (1995). Fault tolerant design using single and multicriteria genetic algorithm optimization. Master’s thesis, Department of Aeronautics and Astronautics, MIT, Cambridge, MA.

  • Souffriau, W., Vansteenwegen, P., Vanden Berghe, G., & Van Oudheusden, D. (2008). A greedy randomised adaptive search procedure for the team orienteering problem. In EU/MEeting 2008, Troyes, France, October 23–24, 2008.

  • Steuer, R. E., Gardiner, L. R., & Gray, J. (1996). A bibliographic survey of the activities and international nature of multiple criteria decision making. Journal of Multi-Criteria Decision Analysis, 5(3), 195–217.

    Article  MATH  Google Scholar 

  • Tsiligirides, T. (1984). Heuristic methods applied to orienteering. The Journal of the Operational Research Society, 35(9), 797–809.

    Article  Google Scholar 

  • Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., & Van Oudheusden, D. (2009). A guided local search metaheuristic for the team orienteering problem. European Journal of Operational Research, 196(1), 118–127.

    Article  MATH  Google Scholar 

  • Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257–271.

    Article  Google Scholar 

  • Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & Grunert da Fonseca, V. (2003). Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation, 7(2), 117–132.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl F. Doerner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schilde, M., Doerner, K.F., Hartl, R.F. et al. Metaheuristics for the bi-objective orienteering problem. Swarm Intell 3, 179–201 (2009). https://doi.org/10.1007/s11721-009-0029-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-009-0029-5

Keywords

Navigation