Skip to main content
Log in

Flocking for multi-robot systems via the Null-Space-based Behavioral control

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

Flocking is the way in which populations of animals like birds, fishes, and insects move together. In such cases, the global behavior of the team emerges as a consequence of local interactions among the neighboring members. This paper approaches the problem of letting a group of robots flock by resorting to a behavior-based control architecture, namely Null-Space-based Behavioral (NSB) control. Following such a control architecture, very simple behaviors for each robot are defined and properly arranged in priority in order to achieve the assigned mission. In particular, flocking is performed in a decentralized manner, that is, the behaviors of each robot only depend on local information concerning the robot’s neighbors. In this paper, the flocking behavior is analyzed in a variety of conditions: with or without a moving rendez-vous point, in a two- or three-dimensional space and in presence of obstacles. Extensive simulations and experiments performed with a team of differential-drive mobile robots show the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonelli, G., Arrichiello, F., Chakraborti, S., & Chiaverini, S. (2007). Experiences of formation control of multi-robot systems with the Null-Space-based Behavioral control. In Proceedings 2007 IEEE international conference on robotics and automation (pp. 1068–1073). New York: IEEE Press.

    Chapter  Google Scholar 

  • Antonelli, G., Arrichiello, F., & Chiaverini, S. (2008a). The null-space-based behavioral control for autonomous robotic systems. Journal of Intelligent Service Robotics, 1(1), 27–39.

    Article  Google Scholar 

  • Antonelli, G., Arrichiello, F., & Chiaverini, S. (2008b). Stability analysis for the null-space-based behavioral control for multi-robot systems. In Proceedings 47th IEEE conference on decision and control and 8th European control conference (pp. 2463–2468). New York: IEEE Press.

    Chapter  Google Scholar 

  • Antonelli, G., Arrichiello, F., & Chiaverini, S. (2008c). The entrapment/escorting mission: an experimental study using a multirobot system. IEEE Robotics and Automation Magazine (RAM). Special Issues on Design, Control, and Applications of Real-World Multi-Robot Systems, 15(1), 22–29.

    Google Scholar 

  • Antonelli, G., & Chiaverini, S. (2003). Kinematic control of a platoon of autonomous vehicles. In Proceedings 2003 IEEE international conference on robotics and automation (pp. 1464–1469). New York: IEEE Press.

    Google Scholar 

  • Antonelli, G., & Chiaverini, S. (2006). Kinematic control of platoons of autonomous vehicles. IEEE Transactions on Robotics, 22(6), 1285–1292.

    Article  Google Scholar 

  • Arkin, R. C. (1989). Motor schema based mobile robot navigation. The International Journal of Robotics Research, 8(4), 92–112.

    Article  Google Scholar 

  • Arkin, R. C. (1998). Behavior-based robotics. Cambridge: MIT Press.

    Google Scholar 

  • Balch, T. (2000). Hierarchic social entropy: an information theoretic, measure of robot group, diversity. Autonomous Robots, 8(3), 209–238.

    Article  Google Scholar 

  • Bishop, B. E. (2003). On the use of redundant manipulator techniques for control of platoons of cooperating robotic vehicles. IEEE Transactions on Systems, Man and Cybernetics, 33(5), 608–615.

    Article  Google Scholar 

  • Bishop, B. E., & Stilwell, D. J. (2001). On the application of redundant manipulator techniques to the control of platoons of autonomous vehicles. In Proceedings 2001 IEEE international conference on control applications (pp. 823–828). New York: IEEE Press.

    Google Scholar 

  • Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, 2(1), 14–23.

    Google Scholar 

  • Cao, Y., Fukunaga, A. S., & Kanhg, A. B. (1997). Cooperative mobile robotics: antecedents and directions. Autonomous Robots, 4(1), 7–27.

    Article  Google Scholar 

  • Chiaverini, S. (1997). Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Transactions on Robotics and Automation, 13(3), 398–410.

    Article  Google Scholar 

  • Cortes, J., Martinez, S., & Bullo, F. (2006). Robust rendez-vous for mobile autonomous agents via proximity graphs in arbitrary dimensions. IEEE Transactions on Automatic Control, 51(8), 1289–1298.

    Article  MathSciNet  Google Scholar 

  • Gu, D., & Hu, H. (2008). Using fuzzy logic to design separation function in flocking algorithms. IEEE Transactions on Fuzzy Systems, 16(4), 826–838.

    Article  MathSciNet  Google Scholar 

  • Hsieh, M. A., Kumar, V., & Chaimowicz, L. (2008). Decentralized controllers for shape generation with robotic swarms. Robotica, 26(05), 691–701.

    Article  Google Scholar 

  • Jadbabaie, A., Lin, J., & Morse, A. S. (2003). Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 48(6), 988–1001.

    Article  MathSciNet  Google Scholar 

  • Ji, M., & Egerstedt, M. (2007). Distributed coordination control of multiagent systems while preserving connectedness. IEEE Transactions on Robotics, 23(4), 693–703.

    Article  Google Scholar 

  • Maciejewski, A. A. (1988). Numerical filtering for the operation of robotic manipulators through kinematically singular configurations. Journal of Robotic Systems, 5(6), 527–552.

    Article  Google Scholar 

  • Mansard, N., & Chaumette, F. (2007). Task sequencing for high-level sensor-based control. IEEE Transactions on Robotics and Automation, 23(1), 60–72.

    Google Scholar 

  • Martinez, S., Cortes, J., & Bullo, F. (2007). Motion coordination with distributed information. IEEE Control Systems Magazine, 27(4), 75–88.

    Article  Google Scholar 

  • Matarić, M. J. (1995). Issues and approaches in the design of collective autonomous agents. Robotics and Autonomous Systems, 16(2), 321–331.

    Article  Google Scholar 

  • Moshtagh, N., & Jadbabaie, A. (2007). Distributed geodesic control laws for flocking of nonholonomic agents. IEEE Transactions on Automatic Control, 52(4), 681–686.

    Article  MathSciNet  Google Scholar 

  • Nakamura, Y., Hanafusa, H., & Yoshikawa, T. (1987). Task-priority based redundancy control of robot manipulators. The International Journal Robotics Research, 6(2), 3–15.

    Article  Google Scholar 

  • Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Transactions on Automatic Control, 51(3), 401–420.

    Article  MathSciNet  Google Scholar 

  • Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 95(1), 215–233.

    Article  Google Scholar 

  • Oriolo, G., De Luca, A., & Vendittelli, M. (2002). WMR control via dynamic feedback linearization: design, implementation, and experimental validation. IEEE Transactions on Control Systems Technology, 10(6), 835–852.

    Article  Google Scholar 

  • Ren, W., & Beard, R. W. (2008). Communications and control engineering. Distributed consensus in multi-vehicle cooperative control. Berlin: Springer.

    MATH  Google Scholar 

  • Ren, W., Beard, R. W., & Atkins, E. M. (2007). Information consensus in multivehicle cooperative control. IEEE Control Systems Magazine, 27(2), 71–82.

    Article  Google Scholar 

  • Reynolds, C. (1987). Flocks, herd and schools: a distributed behavioral model. Computer Graphics, 21(4), 25–34.

    Article  MathSciNet  Google Scholar 

  • Siciliano, B. (1990). Kinematic control of redundant robot manipulators: a tutorial. Journal of Intelligent Robotic Systems, 3(3), 201–212.

    Article  Google Scholar 

  • Tanner, H., Jadbabaie, A., & Pappas, G. J. (2007). Flocking in fixed and switching networks. IEEE Transactions on Automatic Control, 52(5), 863–868.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Antonelli.

Electronic Supplementary Material

Below is the link to the electronic supplementary material. (MPG 3.15 MB)

Below is the link to the electronic supplementary material. (MPG 14.1 MB)

Below is the link to the electronic supplementary material. (GIF 1.60 MB)

Below is the link to the electronic supplementary material. (MPG 3.59 MB)

Below is the link to the electronic supplementary material. (MPG 2.08 MB)

Below is the link to the electronic supplementary material. (MPG 2.08 MB)

Below is the link to the electronic supplementary material. (MPG 3.59 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonelli, G., Arrichiello, F. & Chiaverini, S. Flocking for multi-robot systems via the Null-Space-based Behavioral control. Swarm Intell 4, 37–56 (2010). https://doi.org/10.1007/s11721-009-0036-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-009-0036-6

Keywords

Navigation