Skip to main content
Log in

Stigmergic algorithms for multiple minimalistic robots on an RFID floor

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

Stigmergy is a powerful principle in nature, which has been shown to have interesting applications to robotic systems. By leveraging the ability to store information in the environment, robots with minimal sensing, memory, and computational capabilities can solve complex problems like global path planning. In this paper, we discuss the use of stigmergy in minimalist multi-robot systems, in which robots do not need to use any internal model, long-range sensing, or position awareness. We illustrate our discussion with three case studies: building a globally optimal navigation map, building a gradient map of a sensed feature, and updating the above maps dynamically. All case studies have been implemented in a real environment with multiple ePuck robots, using a floor with 1,500 embedded radio frequency identification tags as the stigmergic medium. Results collected from tens of hours of real experiments and thousands of simulated runs demonstrate the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Texas Instruments Tag-it® HF-I plus transponders operating at 13.56 MHz.

    Fig. 2
    figure 2

    Snapshots of the test environment. a Four robots during a gas source localization experiment. b A removable obstacle used in the dynamic environment experiment

  2. http://www.e-puck.org/.

  3. SkyeTex SkyeModule® M1 (http://www.skyetek.com).

  4. MiCs-5521 metal oxide gas sensor by e2v Technologies.

References

  • Alfred, W., & John, A. (2006). Stigmergic navigation for multi-agent teams in complex environments. In C. Grosan, V. Ramos, & A. Abraham (Eds.), Stigmergic optimization (pp. 85–116). New York: Springer.

    Chapter  Google Scholar 

  • Batalin, M. A., & Sukhatme, G. S. (2004). Coverage, exploration and deployment by a mobile robot and communication network. Telecommunication Systems, 26(2–4), 181–196.

    Article  Google Scholar 

  • Beckers, R., Holland, O., & Deneubourg, J. L. (1994). From local actions to global tasks: Stigmergy and collective robotics. In R. Brooks & P. Maes (Eds.), Artificial life IV (p. 189). Cambridge, MA: MIT Press.

    Google Scholar 

  • Bertsekas, D. (1993). A simple and fast label correcting algorithm for shortest paths. Networks, 23, 703–709.

    Article  MATH  Google Scholar 

  • Bicocchi, N., Mamei, M., & Zambonelli, F. (2010). Handling dynamics in diffusive aggregation schemes: An evaporative approach. Future Generation Computer Systems, 26(6), 877–889.

    Article  Google Scholar 

  • Bonabeau, E., Dorigo, M., & Theraulaz, G. (2000). Inspiration for optimization from social insect behavior. Nature, 406, 39–42.

    Article  Google Scholar 

  • Braitenberg, V. (1986). Vehicles: Experiments in synthetic psychology. Cambridge, MA: MIT Press.

    Google Scholar 

  • Camazine, S. (2003). Self-organization in biological systems. Princeton, NJ: Princeton University Press.

    MATH  Google Scholar 

  • Choi, B. S., Lee, J. W., & Lee, J. J. (2008). Localization and map-building of mobile robot based on RFID sensor fusion system. IEEE international conference on industrial informatics (pp. 412–417). Piscataway, NJ: IEEE Press.

    Google Scholar 

  • Choset, H. (2001). Coverage for robotics: A survey of recent results. Annals of Mathematics and Artificial Intelligence, 31(1–4), 113–126.

    Article  Google Scholar 

  • Deneubourg, J.-L., Aron, S., Goss, S., & Pasteels, J. (1990). The self-organizing exploratory pattern of the Argentine ant. Journal of Insect Behavior, 3(2), 159–168.

  • Di Caro, G., & Dorigo, M. (1998). AntNet: Distributed stigmergetic control for communication networks. Journal of Artificial Intelligence Research, 9, 317–365.

    MATH  Google Scholar 

  • Di Rocco, M., Reggente, M., & Saffiotti, A. (2011). Gas source localization in indoor environments using multiple inexpensive robots and stigmergy. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 5007–5014). Piscataway, NJ: IEEE Press.

  • Donald, B. R. (1995). On information invariants in robotics. Artificial Intelligence, 72(1), 217–304.

    Article  Google Scholar 

  • Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE Computational Intelligence Magazine, 1(4), 28–39.

    Article  Google Scholar 

  • Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics: Part B, 26(1), 29–41.

    Article  Google Scholar 

  • Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge, MA: MIT Press.

    Book  MATH  Google Scholar 

  • Ducatelle, F., Di Caro, G., & Gambardella, L. (2010). Principles and applications of swarm intelligence for adaptive routing in telecommunications networks. Swarm Intelligence, 4(3), 173–198.

    Article  Google Scholar 

  • Dudek, G., Jenkin, M., Milios, E., & Wilkes, D. (1991). Robotic exploration as graph construction. IEEE Transactions on Robotics and Automation, 7(6), 859–865.

    Article  Google Scholar 

  • Fujisawa, R., Imamura, H., Hashimoto, T., & Matsuno, F. (2008). Communication using pheromone field for multiple robots. In Proceedings of the international conference on intelligent robots and systems (pp. 1391–1396). Piscataway, NJ: IEEE Press.

  • Garnier, S., Tâche, F., Combe, M., Grimal, A., & Theraulaz, G. (2007). Alice in pheromone land: An experimental setup for the study of ant-like robots. In Proceedings of the IEEE swarm intelligence symposium (pp. 37–44). Piscataway, NJ: IEEE Press.

  • Grassé, P. P. (1959). La reconstruction du nid et les coordinations interindividuelles chez bellicositermes natalensis et cubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes sociaux, 6(1), 41–80.

    Article  MathSciNet  Google Scholar 

  • Herianto, T., Tomoaki, K., & Daisuke, K. (2008). Realization of a pheromone potential field for autonomous navigation by radio frequency identification. Advanced Robotics, 22, 1461–1478.

    Article  Google Scholar 

  • Holland, O., & Melhuish, C. (1999). Stigmergy, self-organization, and sorting in collective robotics. Artificial Life, 5(2), 173–202.

    Article  Google Scholar 

  • Johansson, R., & Saffiotti, A. (2009). Navigating by stigmergy: A realization on an RFID floor for minimalistic robots. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 245–252). Piscataway, NJ: IEEE Press.

  • Karlson, P., & Lüscher, M. (1959). Pheromones: A new term for a class of biologically active substances. Nature, 83, 55–56.

    Article  Google Scholar 

  • Kim, P., & Kurabayashi, D. (2012). Efficient formation of pheromone potential field by filtering interaction. Journal of Robotics and Mechatronics, 24(4), 561–567.

    Google Scholar 

  • Kobayashi, K. (2005). Shinkansen technology learned from an owl. Japan for Sustainability Newsletter, March 31. http://www.japanfs.org/en/news/archives/news_id027795.html.

  • Kodaka, K., Niwa, H., Sakamoto, Y., Otake, M., Kanemori, Y., & Sugano, S. (2008). Pose estimation of a mobile robot on a lattice of RFID tags. In Proceedings of the international conference on intelligent robots and systems (pp. 1385–1390). Piscataway, NJ: IEEE Press.

  • Kube, C., & Bonabeau, E. (2000). Cooperative transport by ants and robots. Robotics and Autonomous Systems, 30, 85–101.

    Article  Google Scholar 

  • Kubitz, O., Berger, M. O., Perlick, M., & Dumoulin, R. (1997). Application of radio frequency identification devices to support navigation of autonomous mobile robots. In Proceedings of the IEEE vehicular technology conference (pp. 126–130). Piscataway, NJ: IEEE Press.

  • Li, Q., & Rus, D. (2005). Navigation protocols in sensor networks. ACM Transactions on Sensor Networks, 1(1), 3–35.

    Article  Google Scholar 

  • Lilienthal, A., Reggente, M., Trincavelli, M., Blanco, J., & Gonzalez, J. (2009). A statistical approach to gas distribution modelling with mobile robots: The Kernel DM+V algorithm. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 570–576). Piscataway, NJ: IEEE Press.

  • Mamei, M., & Zambonelli, F. (2007). Pervasive pheromone-based interaction with RFID tags. ACM Transactions on Autonomous and Adaptive Systems, 2(2), 1556–4665.

    Article  Google Scholar 

  • Mayet, R., Roberz, J., Schmickl, T., & Crailsheim, K. (2010). Antbots: A feasible visual emulation of pheromone trails for swarm robots. In Proceedings of the international conference on swarm intelligence, Brussels, Belgium (pp. 84–94).

  • Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., et al. (2009). The e-Puck, a robot designed for education in engineering. In Proceedings of the IEEE international conference on autonomous robot systems and competitions (pp. 59–65). Piscataway, NJ: IEEE Press.

  • Murakami, K., Hasegawa, T., Kurazume, R., & Kimuro, Y. (2009). Supporting robotic activities in informationally structured environment with distributed sensors and RFID tags. Journal of Robotics and Mechatronics, 21(4), 453.

    Google Scholar 

  • Nouyan, S., Campo, A., & Dorigo, M. (2008). Path formation in a robot swarm. Swarm Intelligence, 2(1), 1–23.

    Article  Google Scholar 

  • Nouyan, S., Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2009). Teamwork in self-organized robot colonies. IEEE Transactions on Evolutionary Computation, 13(4), 695–711.

    Article  Google Scholar 

  • O’Hara, K. J., Walker, D. B., & Balch, T. R. (2008). Physical path planning using a pervasive embedded network. IEEE Transactions on Robotics, 24(3), 741–746.

    Article  Google Scholar 

  • Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., & Tummolini, L. (2004). Coordination artifacts: Environment-based coordination for intelligent agents. In Proceedings of the international joint conference on autonomous agents and multi agent systems (pp. 286–293). New York: IEEE Computer Society.

  • Park, S., Saegusa, R., & Hashimoto, S. (2007). Autonomous navigation of a mobile robot based on passive RFID. In Proceedings of the international symposium on robot and human interactive communication, Jeju, South Korea (pp. 218–223).

  • Payton, D., Daily, M., Estowski, R., Howard, M., & Lee, C. (2001). Pheromone robotics. Autonomous Robots, 11(3), 319–324.

    Article  MATH  Google Scholar 

  • Saleem, M., Di Caro, G., & Farooq, M. (2011). Swarm intelligence based routing protocol for wireless sensor networks: Survey and future directions. Information Sciences, 181(20), 4597–4624.

    Article  Google Scholar 

  • Svennebring, J., & Koenig, S. (2004). Building terrain-covering ant robots: A feasibility study. Autonomous Robots, 16(3), 313–332.

    Article  Google Scholar 

  • Viroli, M., Casadei, M., Montagna, S., & Zambonelli, F. (2010). Spatial coordination of pervasive systems through chemical-inspired tuple spaces. In 2010 Fourth IEEE international conference on Self-Adaptive and Self-Organizing Systems Workshop (SASOW) (pp. 212–217). doi:10.1109/SASOW.2010.75.

  • Wagner, I. A., Altshuler, Y., Yanovski, V., & Bruckstein, A. M. (2008). Cooperative cleaners: A study in ant robotics. International Journal of Robotics Research, 27(1), 127–151.

    Article  Google Scholar 

  • Wagner, I. A., Lindenbaum, M., & Bruckstein, A. M. (1999). Distributed covering by ant-robots using evaporating traces. IEEE Transactions on Robotics and Automation, 15(5), 918–933.

    Article  Google Scholar 

  • Walter, W. (1950). An imitation of life. Scientific American, 182(5), 42–45.

  • Werfel, J., Petersen, K., & Nagpal, R. (2014). Designing collective behavior in a termite-inspired robot construction team. Science, 343, 754–758.

    Article  Google Scholar 

  • Werger, B. B., & Matarić, M. J. (1996). Robotic “food” chains: Externalization of state and program for minimal-agent foraging. In Proceedings of the 4th international conference on simulation of adaptive behavior, North Falmouth, MA (pp. 625–634).

  • Yao, Z., & Gupta, K. (2011). Distributed roadmaps for robot navigation in sensor networks. IEEE Transactions on Robotics, 27(5), 997–1004.

    Article  Google Scholar 

  • Zambonelli, F., & Mamei, M. (2006). Spatial computing: An emerging paradigm for autonomic computing and communication. In I. Stavrakakis & M. Smirnov (Eds.), Autonomic communication (LNCS 3854, pp. 44–57). New York: Springer.

  • Zecca, G., Couderc, P., Banâtre, M., & Beraldi, R. (2009). A swarm of robots using RFID tags for synchronization and cooperation. International Journal of Intelligent Computing and Cybernetics, 2(4), 846–869.

    Article  MATH  MathSciNet  Google Scholar 

  • Ziparo, V., Kleiner, A., Nebel, B., & Nardi, D. (2007). RFID-based exploration for large robot teams. In Proceedings of the international conference on robotics and automation, Rome, Italy (pp. 4606–4613).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Abdul Khaliq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaliq, A.A., Di Rocco, M. & Saffiotti, A. Stigmergic algorithms for multiple minimalistic robots on an RFID floor. Swarm Intell 8, 199–225 (2014). https://doi.org/10.1007/s11721-014-0096-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-014-0096-0

Keywords

Navigation