Skip to main content
Log in

Distributed deformable configuration control for multi-robot systems with low-cost platforms

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

This work presents a deformable configuration controller—a fully distributed algorithm that enables a swarm of robots to avoid an obstacle while maintaining network connectivity. We assume a group of robots flocking in an unknown environment, each of which has only incomplete knowledge of the geometry without a map, a shared coordinate, or the use of a centralized control scheme. Instead, the controller requires only local information about the area around individual robots. We devise a phase transition machine, which designs overall obstacle avoidance procedures in a fully distributed way. Robots in collision with an obstacle distributively measure the topology of the sensor network formed by the robots in order to estimate the shape of the obstacle, and choose a motion model, either obstacle-detouring or bouncing-off, each of which deforms the network to avoid an obstacle without knowledge of the geometry around the obstacle. The robots then sense the maximum tree angle, which detects the straightness of a configuration to ensure the completion of the obstacle avoidance procedure, and perform flocking with a modified heading consensus to reconstruct a volumed network with their original headings. We provide theoretical performance analyses of the controller. We also validate the theoretical results by multiple simulations with a swarm with various population sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Balch, T. (2000). Hierarchic social entropy: An information theoretic measure of robot group diversity. Autonomous Robots, 8(3), 209–238.

    Article  Google Scholar 

  • Balch, T., & Hybinette, M. (2000). Social potentials for scalable multi-robot formations. In 2000 IEEE international conference on robotics and automation (pp. 73–80). IEEE.

  • Bao, D. Q., & Zelinka, I. (2019). Obstacle avoidance for swarm robot based on self-organizing migrating algorithm. Procedia Computer Science, 150, 425–432.

    Article  Google Scholar 

  • Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE Journal on Robotics and Automation, 2(1), 14–23.

    Article  Google Scholar 

  • Bruckstein, A. M. (1993). Why the ant trails look so straight and nice. The Mathematical Intelligencer, 15(2), 59–62.

    Article  Google Scholar 

  • Chuang, Y. L., Huang, Y. R., RD’Orsogna, M., & Bertozzi, A. (2007). Multi-vehicle flocking: Scalability of cooperative control algorithms using pairwise potentials. In 2007 IEEE international conference on robotics and automation (pp. 2292–2299). IEEE.

  • Cornejo, A., & Lynch, N. (2010). Fault-tolerance through k-connectivity. In Workshop on network science and systems issues in multi-robot autonomy: ICRA (Vol 2, p. 2010). IEEE.

  • Cornejo, A., Lynch, A. J., Fudge, E., Bilstein, S., Khabbazian, M., & McLurkin, J. (2013). Scale-free coordinates for multi-robot systems with bearing-only sensors. The International Journal of Robotics Research, 32(12), 1459–1474.

    Article  Google Scholar 

  • Fischer, M. J., Lynch, N. A., & Paterson, M. S. (1985). Impossibility of distributed consensus with one faulty process. Journal of the ACM (JACM), 32(2), 374–382.

    Article  MathSciNet  Google Scholar 

  • Gasparri, A., Sabattini, L., & Ulivi, G. (2017). Bounded control law for global connectivity maintenance in cooperative multirobot systems. IEEE Transactions on Robotics, 33(3), 700–717.

    Article  Google Scholar 

  • Gazi, V. (2005). Swarm aggregations using artificial potentials and sliding-mode control. IEEE Transactions on Robotics, 21(6), 1208–1214.

    Article  Google Scholar 

  • Ghapani, S., Mei, J., Ren, W., & Song, Y. (2016). Fully distributed flocking with a moving leader for Lagrange networks with parametric uncertainties. Automatica, 67, 67–76.

    Article  MathSciNet  Google Scholar 

  • Ghedini, C., Ribeiro, C. H., & Sabattini, L. (2018). A decentralized control strategy for resilient connectivity maintenance in multi-robot systems subject to failures. In Distributed autonomous robotic systems (pp. 89–102). Springer.

  • Gill, A., et al. (1962). Introduction to the theory of finite-state machines. McGraw-Hill.

    MATH  Google Scholar 

  • Hasan, Y. F., & Gebrel, F. M. (2012). Articulation points detection in wireless sensor networks. International Journal of Intelligent Information Processing, 3(4), 87–96.

    Article  Google Scholar 

  • Hayes, A. T., & Dormiani-Tabatabaei, P. (2002). Self-organized flocking with agent failure: Off-line optimization and demonstration with real robots. In 2002 IEEE international conference on robotics and automation (pp. 3900–3905). IEEE.

  • Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002) Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem. In Distributed autonomous robotics systems (pp. 299–308). Springer.

  • Jin, J., Kim, Y. G., Wee, S. G., Gans, N. (2015). Consensus based attractive vector approach for formation control of nonholonomic mobile robots. In 2015 IEEE international conference on advanced intelligent mechatronics (AIM) (pp. 977–983). IEEE.

  • Khateri, K., Pourgholi, M., Montazeri, M., & Sabattini, L. (2020). Decentralized local-global connectivity maintenance for networked robotic teams. European Journal of Control, 51, 110–121.

    Article  MathSciNet  Google Scholar 

  • Krupke, D., Ernestus, M., Hemmer, M., & Fekete, S. P. (2015a). Distributed cohesive control for robot swarms: Maintaining good connectivity in the presence of exterior forces. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 413–420). IEEE/RSJ.

  • Krupke, D., Hemmer, M., McLurkin, J., Zhou, Y., & Fekete, S. P. (2015b). A parallel distributed strategy for arraying a scattered robot swarm. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2795–2802). IEEE/RSJ.

  • La, H., & Sheng, W. (2009a). Adaptive flocking control for dynamic target tracking in mobile sensor networks. In 2009 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 4843–4848). IEEE/RSJ.

  • La, H. M., & Sheng, W. (2009b). Flocking control of a mobile sensor network to track and observe a moving target. In 2012 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3129–3134). IEEE/RSJ.

  • LaValle, S. M. (2006). Planning algorithms. Cambridge University Press.

    Book  Google Scholar 

  • Lee, S. K., & McLurkin, J. (2014). Distributed cohesive configuration control for swarm robots with boundary information and network sensing. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1161–1167). IEEE/RSJ.

  • Lee, S. K., Kim, D,, Shin, D. S., Jang, T., & McLurkin, J. (2016). Distributed deformable configuration control for multi-robot systems. In 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 5347–5354). IEEE/RSJ.

  • Li, Q., De Rosa, M., & Rus, D. (2003). Distributed algorithms for guiding navigation across a sensor network. In Proceedings of the 9th annual international conference on mobile computing and networking (pp. 313–325). ACM.

  • Luo, W., & Sycara, K. (2019). Minimum k-connectivity maintenance for robust multi-robot systems. In 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 7370–7377). IEEE/RSJ.

  • Mamani, K. M. S., & Palacios, M. F. R. D. (2019). Flocking model for self-organized swarms. In 2019 International conference on electronics (pp. 9–17). IEEE: Communications and Computers (CONIELECOMP).

  • McLurkin, J. (2008). Analysis and implementation of distributed algorithms for multi-robot systems. Ph.D. thesis, Massachusetts Institute of Technology (MIT)

  • McLurkin, J., & Demaine, E. D. (2009) A distributed boundary detection algorithm for multi-robot systems. In 2009 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 4791–4798). IEEE/RSJ.

  • McLurkin, J., McMullen, A., Robbins, N., Habibi, G., Becker, A., Chou, A., Li, H., John, M., Okeke, N., Rykowski, J., et al. (2014) A robot system design for low-cost multi-robot manipulation. In 2014 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 912–918). IEEE/RSJ.

  • McLurkin, J., Rykowski, J., John, M., Kaseman, Q., & Lynch, A. J. (2013). Using multi-robot systems for engineering education: Teaching and outreach with large numbers of an advanced, low-cost robot. IEEE Transactions on Education, 56(1), 24–33.

    Article  Google Scholar 

  • Moshtagh, N., Jadbabaie, A., & Daniilidis, K. (2006) Vision-based control laws for distributed flocking of nonholonomic agents. In 2006 IEEE international conference on robotics and automation (pp. 2769–2774). IEEE.

  • Ni, W., & Cheng, D. (2010). Leader-following consensus of multi-agent systems under fixed and switching topologies. Systems and Control Letters, 59(3–4), 209–217.

    Article  MathSciNet  Google Scholar 

  • O’Kane, J. M., & LaValle, S. M. (2008). Comparing the power of robots. The International Journal of Robotics Research, 27(1), 5–23.

  • Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control, 51(3), 401–420.

    Article  MathSciNet  Google Scholar 

  • Reynolds, C. W. (1987). Flocking, herds, and schools: A distributed behavioral model. Computer Graphics, 21(4), 25–34.

    Article  Google Scholar 

  • Rykowski, J. B. (2012). Pose estimation with low-resolution bearing-only sensors. Ph.D. thesis, Rice University.

  • Shi, H., Wang, L., Chu, T., & Xu, M. (2005). Flocking coordination of multiple mobile autonomous agents with asymmetric interactions and switching topology. In 2005 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 935–940). IEEE/RSJ.

  • Shiliang, S., Ting, W., Chen, Y., Xiaofan, L., & Hai, Z. (2014). Distributed fault detection and isolation for flocking in a multi-robot system with imperfect communication. International Journal of Advanced Robotic Systems, 11(6), 86.

    Article  Google Scholar 

  • Skiena, S. S. (2020). The algorithm design manual. Springer.

    Book  Google Scholar 

  • Spears, W. M., Spears, D. F., Hammann, J. C., & Heil, R. (2004). Distributed, physics-based control of swarms of vehicles. Autonomous Robots, 17(2–3), 137–162.

    Article  Google Scholar 

  • Tarjan, R. (1971). Depth-first search and linear graph algorithms. In 12th Annual symposium on switching and automata theory (pp. 114–121). SIAM.

  • Ulrich, I., & Borenstein, J. (1998) Vfh+: Reliable obstacle avoidance for fast mobile robots. In 1998 IEEE international conference on robotics and automation (Cat. No. 98CH36146) (Vol. 2, pp. 1572–1577). IEEE.

  • Vásárhelyi, G., Virágh, C., Somorjai, G., Nepusz, T., Eiben, A. E., & Vicsek, T. (2018). Optimized flocking of autonomous drones in confined environments. Science Robotics, 3(20), eaat3536.

    Article  Google Scholar 

  • Yoo, S. J., & Park, B. S. (2017). Connectivity-preserving approach for distributed adaptive synchronized tracking of networked uncertain nonholonomic mobile robots. IEEE Transactions on Cybernetics, 48(9), 2598–2608.

    Article  Google Scholar 

  • Yoo, S. J., & Park, B. S. (2019). Connectivity preservation and collision avoidance in networked nonholonomic multi-robot formation systems: Unified error transformation strategy. Automatica, 103, 274–281.

    Article  MathSciNet  Google Scholar 

  • Zavlanos, M. M., Jadbabaie, A., & Pappas, G. J. (2007). Flocking while preserving network connectivity. In Decision and control, 2007 46th IEEE conference on (pp. 2919–2924). IEEE.

  • Zavlanos, M. M., Egerstedt, M. B., & Pappas, G. J. (2011). Graph-theoretic connectivity control of mobile robot networks. Proceedings of the IEEE, 99(9), 1525–1540.

    Article  Google Scholar 

  • Zhao, W., Chu, H., Zhang, M., Sun, T., & Guo, L. (2019). Flocking control of fixed-wing uavs with cooperative obstacle avoidance capability. IEEE Access, 7, 17798–17808.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seoung Kyou Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.K. Distributed deformable configuration control for multi-robot systems with low-cost platforms. Swarm Intell 16, 169–209 (2022). https://doi.org/10.1007/s11721-022-00211-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-022-00211-2

Keywords