Abstract
Flexible automation gains importance in different manufacturing sectors as a consequence of increasing product individualization on the one hand and high wage costs on the other one. Flexible manufacturing systems (FMS) distinguish themselves through multidirectional material flows, flexible order processing possibilities and rapid set-up as well as reconfiguration ability during the operation. As a consequence, operation scenarios in such manufacturing systems and, thus, control tasks become more complex. This requires higher intelligence of the operations control systems, which must be able not only to execute a predefined control logic, but also predict the development of the situation, schedule, plan and optimize the manufacturing operation sequences in FMS and give additional hints to the operator. This paper analyzes the requirements on the modeling of intelligent operations control systems and proposes an architecture for future control solutions allowing to integrate seamlessly the scheduling and execution in flexibly automated systems.







Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Hofmann G (2000) Flexible Fertigungssysteme von heute. Werkstatt und Betrieb 133(3):46–49
Weck M (1997) Werkzeugmaschinen. Band 1—Maschinenarten und Anwendungsbereiche, 5th edn, Springer, Berlin
Deufel K (2000) Gegensätze erfolgreich vereint. Werkstatt und Betrieb 4(133):32–34
Jung P (2003) Produktiver Maschinenmix auf der ganzen Linie. Werkstatt und Betrieb 1–2(136):22–24
Weck M, Possel-Dölken F (2004) Programmable fms operations control based on independent control agents. Prod Eng Ann WGP 2(11):199–202
Maier U (1997) Offene Leitsysteme mit PLS, SPS oder PC, atp 39(6):22–33
Brecher C, Possel-Dölken F (2005) Agentenbasierte Ablaufsteuerung. atp—Automatisierungstechnische Praxis 11(47):46–54
Possel-Dölken F (2005) Projektierbares Multiagentensystem für die flexibel automatisierte Fertigung. Dissertation, RWTH Aachen
Chan TS, Chan HK (2004) A comprehensive survey and future trend of simulation study on FMS scheduling. J Intell Manuf 1(15):87–102
Web Services Business Process Execution Language. Version 2.0. Committee Draft. OASIS (2006, May 17). Available at: http://www.oasis-open.org/committees/download.php/18714/wsbpel-specification-draft-May17.htm
Workflow Management Facility Specification. Version 1.2. OMG (2000, April). Available at: http://www.omg.org/docs/formal/00-05-02.pdf
Hollingsworth D (2006) The workflow reference model 10 years on, 2006 workflow handbook. In: Fischer L (ed) Future strategies, Lighthouse Point, FL
Baptiste P, Le Pape C, Nuijten W (2001) Constraint-based scheduling. Applying constraint programming to scheduling problems. Kluwer, Norwell, MA
Paltrinieri M (1994) Some remarks on the design of constraint satisfaction problems. In: Borning A (ed) Second international workshop on principles and practice of constraint programming (PPCP-94). Lecture notes in computer science, vol 874, pp 299–311, Springer, Berlin
Brecher C, Fayzullin K, Possel-Dölken F, Valkyser B (2007) Optimierung der flexiblen Fertigung—Neue Ansätze für konfigurierbare, modellbasierte Planungssysteme, wt Werkstattstechnik online 6(97):464–470
Acknowledgments
German Research Foundation (DFG) is acknowledged for the substantial support dedicated to this research.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Brecher, C., Fayzullin, K. & Possel-Dölken, F. Intelligent operations control: architecture for seamless integration of scheduling and execution. Prod. Eng. Res. Devel. 2, 293–301 (2008). https://doi.org/10.1007/s11740-008-0105-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11740-008-0105-5