Skip to main content
Log in

Industrial powerline communication for machine tools and robotics

  • Communication
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Nowadays, machining systems worldwide are on a very high level, regarding mechanics as well as control technology. Therefore, in the case of challenging sub-assemblies like drive and control systems and technological components (e.g. high-frequency spindles and processing heads) the emphasis should be placed on the integration of these components in specialised machine and plant configurations, especially by reducing the interfaces with a new communication system. In the future, technological innovations can be primarily expected from the introduction of highly integrated mechatronic machine modules. The concept of this new powerline communication system is the transmission of data and power for a drive unit over a common power cable. This can be achieved by high-frequency modulation of the data onto the cable. In this paper, the basic conditions for the industrial powerline communication are presented. First an overview is given on the existing communication systems in production technology. As an essential requirement the transfer function of the transmission channel is analysed. Further, the disturbances on the transmission channel are discussed. The final essential requirement is the compliance with the standards regarding elimination of disturbances, conducted as well as radiated. For proof of functionality the Orthogonal Frequency Division Multiplex- (OFDM-) transmission method is applied. This is implemented in two modems which have been set up within a demonstration system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kirchner S, Winkler R, Westkämper E (2003) Unternehmensstudie zur Wandlungsfähigkeit von Unternehmen. wt Werkstattstechnik online 93(4):254–260 (in german)

    Google Scholar 

  2. Koren Y et al (1999) Reconfigurable manufacturing systems. Annals of the CIRP 48(2):527–540

    Article  Google Scholar 

  3. Schmitz S, Wurst K-H, Lechler A (2007) Integrierte mechatronische Module für rekonfigurierbare Bearbeitungssysteme. IFM2007, Winterthur (Switzerland), pp 67–87 (in german)

  4. Pritschow G, Schmid W (1994) Dezentrale Steuerungsstrukturen für modulare Robotersysteme. Roboteranwendung für die flexible Fertigung. Carl Hanser Verlag, München (in german)

    Google Scholar 

  5. Schmitz S, Wurst K.-H (2009) Kommunikationsvorrichtung, insbesondere für Maschinen, Deutsche Patentanmeldung (Offenlegungsschrift), DE 102007038119 A1 (in german)

  6. Pritschow G (2006) Einführung in die Steuerungstechnik. Carl Hanser Verlag, München (in german)

    Google Scholar 

  7. Heisel U, Wurst K-H (2008) Wandlungsfähigkeit in der variantenreichen Serienfertigung, TFB 059 T3-Abschlussbericht, IfW/ISW University of Stuttgart (in german)

  8. Lechler A, Verl A (2009) Functional Interface for Universal Access to Ethernet-based Field Bus Protocols. In: WMSCI, 13th world multi-conference on systemics, cybernetics and informatics. Orlando, USA

  9. Vandersee S, Schemmer S, Gergeleit M (2006) Switched WLAN in der Automatisierung—Bessere Kontrolle für komplexe WLANs. Wireless Technologies: von der Technologie zur Anwendung, Dortmund, 8. Kongress (in german)

  10. Fette B et al (2008) RF & Wireless Technologies: Know It All. Elsevier Inc., Burlington (USA)

    Google Scholar 

  11. N.N (2006) FlexRay Konsortium: FlexRay Communication System—Electrical Physical Layer Specification, Version 2.1 B

  12. Stiegler F (2003) Schnelle Datenübertragung auf einer neuartigen KFZ-Bordnetzstruktur. Dissertation, University of Karlsruhe (in german)

  13. Janse van Rensburg PA, Ferreira, HC (2003) Automotive power-line communications: favourable topology for future automotive electronic trends. In: Proceedings of the 7th international symposium on power-line communications. Kyoto, Japan

  14. Olivas Carrion M, Liénard M, Degauque P (2006) Communication over vehicular DC lines: propagation channel characteristics. In: Proceedings of the 10th international symposium on power-line communications. Orlando, USA

  15. Wade E, Asada HH (2005) DC powerline communication network for a wearable health monitoring system. In: Proceedings of the 9th international symposium on power-line communications. Vancouver, Kanada

  16. Jones CH (2005) DC powerline communication network for a wearable health monitoring system. In: Proceedings of the 9th international symposium on power-line communications. Vancouver, Kanada

  17. Liu E et al (2005) Powerline communication over special systems. In: Proceedings of the 9th international symposium on power-line communications. Vancouver, Kanada

  18. Barmada S et al (2008) Design of a PLC system onboard trains: selection and analysis of the plc channel. In: Proceedings of the 12th international symposium on power-line communications. Jeju Island, Korea

  19. Tsuzuki S et al (2008) Channel characteristic comparison of armored shipboard cable and unarmored one. In: Proceedings of the 12th international symposium on power-line communications. Jeju Island, Korea

  20. Griepentrog G (2001) Powerline communication on 750 V DC networks. In: Proceedings of the 5th international symposium on power-line communications. Malmö, Schweden

  21. Wade ER, Asada HH (2006) Design of a Broadcasting Modem for a DC PLC Scheme. IEEE/ASME Trans on Mechatron 11(5):533–540

    Google Scholar 

  22. Schmitz S, Yang D, Wurst, K-H (2008) A new communication system for reconfigurable mechatronic modules, 15th international conference on mechatronics and machine vision in practice, Massey University, Auckland, Neuseeland

  23. Verl A, Schmitz S, Yang D, Wurst K-H (2009) Vereinheitlichung der Übertragungsmedien für die Leistungssteuerung und die Kommunikation. Fortschritt-Berichte VDI Reihe 2, Düsseldorf, VDI-Verlag (in german)

  24. N.N (2006) EN 50370-1 (VDE 0875-370-1): Elektromagnetische Verträglichkeit (EMV)—Produktfamiliennorm für Werkzeugmaschinen—Teil 1: Störaussendung, VDE Verlag, Berlin (in german)

  25. N.N (2008) EN 55022 (VDE 0878-22): Einrichtungen der Informationstechnik—Funkstöreigenschaften—Grenzwerte und Messverfahren, VDE Verlag, Berlin (in german)

  26. N.N (2004) EN 61800 (VDE 0160-103): Drehzahlveränderbare elektrische Antriebe—Teil 3: EMV-Anforderungen einschließlich spezieller Prüfverfahren. VDE Verlag, Berlin (in german)

  27. N.N (2007) EN 61800-5-2 (VDE 0160-105-2): Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl—Teil 5-2: Anforderungen an die Sicherheit—Funktionale Sicherheit, VDE Verlag, Berlin (in german)

  28. Schwab AJ, Kürner W (2007) Elektromagnetische Verträglichkeit. Springer, Berlin

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Schmitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verl, A., Schmitz, S., Yang, D. et al. Industrial powerline communication for machine tools and robotics. Prod. Eng. Res. Devel. 4, 295–305 (2010). https://doi.org/10.1007/s11740-009-0205-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-009-0205-x

Keywords

Navigation