Skip to main content
Log in

Influence of scaled undeformed sections of cut on strain rate, cutting force and temperature

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

In machining processes, a decreasing undeformed chip thickness leads to an increase in the specific machining forces. This effect is commonly known as the scaling effect in chip formation. In the literature, several reasons for this effect are discussed. One approach focuses on the increase in the strain rate due to a decrease in the undeformed chip thickness. The increase in the strain rate leads to a hardening effect of the machined material which results in higher specific cutting forces. However, it has not been definitely proven that this is the cause of the scaling effect in chip formation. This paper describes an approach for examining the influence of the strain rate on the scaling effect. Firstly, FE-simulations have been carried out to gain knowledge about the strain rates in the center of the shear zone. By means of these simulations, cutting speeds which lead to constant strain rates in the center of the shear zone have been determined for a broad range of chip thickness. In a second step, experimental investigations have been carried out using the simulated cutting speeds and chip thicknesses. The chip formation processes and the machining forces have been analyzed with constant strain rates and different chip thicknesses as well as with a constant cutting speed. The main result of these investigations is that the strain rate has only a minor influence on the specific cutting forces. It is shown that the temperature in the shear zone decreases with a decrease in the chip thickness. This leads to lower thermal softening of the material and thus to higher specific cutting forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Byrne G, Dornfeld D, Denkena B (2003) Advanced cutting technology. CIRP Ann—Manuf Technol 52(2):483–507

    Article  Google Scholar 

  2. Vollertsen F (2009) Größeneffekte—eine systematische Einordnung. In: Vollertsen F (ed) Größeneinflüsse bei Fertigungsprozessen. Beiträge zum Abschusskolloquium des SPP 1138, Bonn. BIAS-Verlag, Bremen, pp 1–10

    Google Scholar 

  3. Vollertsen F (2008) Categories of size effects. Prod Eng—Res Dev 2(4):377–383

    Article  Google Scholar 

  4. Shaw MC (2003) The size effect in metal cutting. Sadhana 28(5):875–896

    Article  Google Scholar 

  5. Baker WR, Marshall ER, Shaw MC (1952) The size effect in metal cutting. Trans ASME 74:61–72

    Google Scholar 

  6. Dinesh D, Swaminathan S, Chandrasekar S, Farris TN (2001) An intrinsic size-effect in machining due to the strain gradient. In: Proceedings ASME-IMECE, pp 1–8

  7. Larsen-Basse J, Oxley PLB (1973) Effect of strain-rate sensitivity on scale-phenomena in chip formation. In: Proceedings of the 13th international machine tool design and research conference, University of Birmingham, pp 209–216

  8. Stevenson MG, Oxley PLB (1969) An experimental investigation of the influence of speed and scale on the strain-rate in a zone of intense plastic deformation. Proc Inst Mech Eng 184:561–576

    Article  Google Scholar 

  9. Hastings WF, Oxley PLB (1976) Minimum work as a possible criterion for determining the frictional conditions at the tool/chip interface in machining. Phil Trans R Soc London 282:565–584

    Article  Google Scholar 

  10. Herzig N (2008) Erfassung und Beschreibung des skalierten Fließ-, Verfestigungs- und Versagensverhaltens ausgewählter metallischer Werkstoffe. Dr.-Ing. Dissertation, Technische Universität Chemnitz, ISSN 1860-4773

  11. Armarego EJA, Brown RH (1969) The machining of metals. Englewood Cliffs, Prentice-Hall

  12. Kotschenreuther J (2008) Empirische Erweiterung von Modellen der Makrozerspanung auf den Bereich der Mikrozerspanung. Dr.-Ing. Dissertation, Universität Karlsruhe, ISBN 978-3832270414

  13. Kahnis P (2008) Analyse von Größeneinflüssen bei einer Herabskalierung des Fräsprozesses in den Mikrobereich. Dr.-Ing. Dissertation, Technische Universität Dortmund, ISBN 978-3-8027-8745-4

  14. Biermann D, Kahnis P (2010) Analysis and simulation of size effects in micromilling. Prod Eng Res Dev 4(1):25–34

    Article  Google Scholar 

  15. Jivishov V (2008) Mikrogeometrische Einflüsse beim Weich- und Hartspanen. Dr.-Ing. Dissertation, Leibniz Universität Hannover, ISBN 978-3939026914

  16. Klocke F, Gerschwiler K, Abouridouane M (2009) Größeneffekte beim Bohren mit Wendelbohrern in Stahl. In: Vollertsen F (ed) Größeneinflüsse bei Fertigungsprozessen. Beiträge zum Abschusskolloquium des SPP 1138, Bonn. BIAS-Verlag, Bremen, pp 529–548

    Google Scholar 

  17. Siems S, Warnecke G, Aurich JC (2005) Mechanismen der Werkstoffbeanspruchung sowie deren Beeinflussung bei der Zerspanung mit hohen Geschwindigkeiten. In: Tönshoff HK, Hollmann F (eds) Hochgeschwindigkeitsspanen metallischer Werkstoffe. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim

    Google Scholar 

  18. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strain, high strain rates and high temperatures. In: 7th international symposium on ballistics, pp 541–547

  19. Kalisch K (2007) FEM-Beschreibung der Einflüsse der Werkzeuggeometrie bei der Hochgeschwindigkeitszerspanung. Dr.-Ing. dissertation, Universität der Bundeswehr Hamburg, ISBN 978-3832258320

  20. Clos R, Radoch S, Schreppel U, Veit P (2009) Größeneffekt und Werkstoffverhalten beim Hartzerspanen von 100Cr6. In: Vollertsen F (ed) Größeneinflüsse bei Fertigungsprozessen. Beiträge zum Abschusskolloquium des SPP 1138, Bonn. BIAS-Verlag, Bremen, pp 347–368

    Google Scholar 

  21. Denkena B, Tönshoff HK (2004) Spanen–Grundlagen. 2 Auflage. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

The authors thank the German Research Foundation (DFG) for funding this work within the project “Influence of the chip cross section shape on the chip formation mechanism” as part of the special research program SPP 1138 “Process Scaling”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Köhler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denkena, B., de Leon, L. & Köhler, J. Influence of scaled undeformed sections of cut on strain rate, cutting force and temperature. Prod. Eng. Res. Devel. 4, 457–464 (2010). https://doi.org/10.1007/s11740-010-0230-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-010-0230-9

Keywords

Navigation