Skip to main content
Log in

Strategies for springback compensation regarding process robustness

  • Computer Aided Engineering
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

In this article, strategies which compensate geometrical deviations caused by springback are discussed using finite element simulations and statistical modelling techniques. First of all the ability to predict springback using a finite element simulation model is analysed. For that purpose numerical predictions and experiments are compared with each other regarding the amount of springback. In a next step, different strategies for compensating springback such as a modification of stress condition, component stiffness and tool geometry are introduced. On the basis of finite element simulations these different compensation strategies are illustrated for a stretch bending process and experimentally checked for an example. Finally springback simulations are compared regarding their robustness against noise variables such as friction and material properties. Thereby a method based on statistical prediction models is introduced which allows for an accurate approximation of the springback distribution with less numerical effort in comparison to a classical Monte-Carlo method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tillmann W, Vogli E, Baumann I, Krebs B (2007) Three-dimensional surface engineering of forming tools by thermal spraying. Smart Processing Technology (SPT07), Jg. 2:33–36

    Google Scholar 

  2. Roll K (2004) Simulation der Blechumformung mit Berücksichtigung der Besonderheiten höchstfester Stähle. In: Tagungsband der Sächsischen Fachtagung für Umformtechnik, pp 437–456, ISBN 3-86012-236-3

  3. Rohleder M (2001) Simulation rückfederungsbedingter Formabweichungen im Produktentstehungsprozess von Blechformteilen. Dr.-Ing. Dissertation, Universität Dortmund (Germany), ISBN 3-8265-9977-2

  4. Schmidt-Jürgensen R (2002) Untersuchungen zur Simulation rückfederungsbedingter Formabweichungen beim Tiefziehen. Dr.-Ing. Dissertation, Universität Hannover (Germany)

  5. Burchitz IA (2008) Improvement of springback prediction in sheet metal forming. Ph.D. Thesis. University of Twente (Netherlands), ISBN 978-90-365-2656-2

  6. Krasovsky A (2005) Verbesserte Vorhersage der Rückfederung bei der Blechumformung durch weiterentwickelte Werkstoffmodelle. Dr.-Ing. Dissertation, Universität Karlsruhe (Germany)

  7. Xu WL, Ma CH, Li CH, Feng WJ (2004) Sensitive factors in springback simululation for sheet metal forming. J Mater Process Technol 151:217–222, ISSN 0924-0136

    Google Scholar 

  8. Gösling M, Kracker H, Brosius A, Tekkaya AE, Gather U (2008) Simulation rückfederungsbedingter Formabweichungen am Beispiel des Hutprofilziehens. In: Kolloquiumsband SFB708, pp 143–150, ISBN 978-3-89957-072-4

  9. Gösling M, Kracker H, Brosius A, Kuhnt S, Tekkaya AE (2009) Simulation und Kompensation rückfederungsbedingter Formabweichungen. In: Kolloquiumsband SFB708, pp 155–168, ISBN 978-3-86975-010-1

  10. Lemaitre J, Chaboche JL (1990) Mechanics of solid materials. Camebridge University Press, Camebridge, ISBN 0-521-32853-5

  11. Kubli W, Krasovsky A, Sester M (2008) Advanced modeling of reverse loading effects for sheet metal forming processes. In: Proceedings of NUMISHEET Conference, 2008, Interlaken (Switzerland), pp 479–484, ISBN 978-3-909386-80-2

  12. Gösling M, Kracker H, Brosius A, Gather U, Tekkaya AE (2007) Study of the influence of input parameters on a springback prediction by FEA. In: Proceedings of IDDRG 2007 International Conference, Győr (Hungary), pp 397–404

  13. Makinouchi A, Nakamachi E, Onate, E, Wagoner RH (1993) Benchmark Problem: 2D-Draw-Bending. Proceedings of Numisheet Conference, Isehara (Japan)

  14. Wang CH (2002) An industrial outlook for springback predictability, measurement, reliability, and compensation technology. In: Proceedings of Numisheet Conference, Jeju Island (Korea), pp 597–604, ISBN 978-89-5708-152-5

  15. Roll K, Lemke T, Wiegand K (2005) Possibilities and Strategies for Simulations and Compensation for Springback. Proceedings of the Numisheet, Detroit (Michigan, USA), pp 295–302, ISBN 0-7354-0265-5

  16. Lingbeek RA (2008) Virtual tool reworking—new strategies in die design using finite element forming simulations. Ph.D. Thesis, University of Twente (Netherlands), ISBN 978-90-77172-38-4

  17. Myers R, Montgomery D, Anderson-Cook C (2009) Response surface methodology. Wiley, New York, ISBN 0470174463

  18. Beth M (1993) Untersuchungen zum Rückfederungsverhalten von Feinblechen bei Tief- und Streckziehvorgängen. Dr-Ing. Dissertation, Universität Darmstadt (Germany)

  19. Neugebauer R, Lieber T (2008) Experimentelle Untersuchung von werkzeuggeometrischen Maßnahmen zur Kompensation der Rückfederung. Forschungsbericht P662 der Forschungsvereinigung Stahlanwendung, Verlag und Vertriebsgesellschaft mbH, Düsseldorf, ISBN 3-937567-62-3

  20. Santner T, Williams B, Notz W (2003) The design and analysis of computer experiments. Springer, New York, ISBN 0-38795-420-1

  21. Saltelli A, Chan K, Scott EM (2000) Sensitivity analysis. Wiley, New York, ISBN 0-47199-892-3

Download references

Acknowledgments

This paper is based on investigations of the collaborative research centre SFB 708. The authors would like to thank the Deutsche Forschungsgemeinschaft (DFG) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gösling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gösling, M., Kracker, H., Brosius, A. et al. Strategies for springback compensation regarding process robustness. Prod. Eng. Res. Devel. 5, 49–57 (2011). https://doi.org/10.1007/s11740-010-0251-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-010-0251-4

Keywords