Skip to main content

Advertisement

Log in

Adaptive process planning

  • Production Management
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

The success of companies with job shop production strongly depends on their production flexibility. This is often significantly influenced by the process planning and production control. Aiming at maximizing production flexibility, this paper presents an approach to further integration of process planning and production control by combining and optimizing already existing planning methods. Essentially, in a rough planning stage, all process chains which are technological relevant to the manufacturing of a given product are taken into consideration. Applying a dynamic multi-criteria evaluation to all process chains ensures that the most appropriate, situation-specific process chain is chosen for production. This is done based on pre-established production targets, which facilitates a flexible response to incidents and other unplanned production events. The structure and functionalities of the presented approach are thoroughly explained in this paper and its feasibility is demonstrated with an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Beach R, Muhlemann AP, Price DHR, Paterson A, Sharp JA (2000) A review of manufacturing flexibility. Eur J Oper Res 122:41–57

    Article  MATH  Google Scholar 

  2. Nyhuis P, Münzberg B, Kennemann M (2009) Configuration and regulation of PPC. Prod Eng Res Dev (WGP) 3:287–294

    Article  Google Scholar 

  3. Zaeh MF, Reinhart G, Ostgathe M, Geiger F, Lau C (2010) A holistic approach for the cognitive control of production systems. Adv Eng Inform 24:300–307

    Article  Google Scholar 

  4. Milberg J, Müller S (2007) Integrated configuration and holistic evaluation of technology chains within process planning. Prod Eng Res Dev (WGP) 1(4):401–406

    Article  Google Scholar 

  5. Denkena B, Lenz AT, Lorenzen LE (2009) Agile planning for gentelligent production. In: Proceedings of the 3rd international conference on changeable, agile, reconfigurable and virtual production CARV, Munich, pp 79–88

  6. Chryssolouris G (1996) Flexibility and its measurement. CIRP Ann Manuf Technol 45(2):581–587

    Article  Google Scholar 

  7. Buzacott JA, Mandelbaum M (2008) Flexibility in manufacturing and services: achievements, insights and challenges. Flex Serv Manuf J 20(1–2):13–58

    Article  MATH  Google Scholar 

  8. Tolio T (2009) Design of flexible production systems. Springer, Berlin

    Book  Google Scholar 

  9. Toni DE, Tonchia S (1998) Manufacturing flexibility: a literature review. Int J Prod Res 36(6):1587–1617

    Article  MATH  Google Scholar 

  10. ElMaraghy HA (2006) Flexible and reconfigurable manufacturing systems paradigms. Int J Flex Manuf Syst 17:261–276

    Article  MATH  Google Scholar 

  11. Kaluza B, Blecker T (2005) Erfolgsfaktor Flexibilität. Strategien und Konzepte für wandlungsfähige Unternehmen. Band 60, Erich Schmidt Verlag

  12. Wang L, Hao Q, Shen W (2005) Function block based integration of process planning, scheduling and execution for RMS. In: Proceedings of the CIRP 3rd international conference on reconfigurable manufacturing systems

  13. Denkena B, Lorenzen LE, Battino A (2006) Increased production flexibility and efficiency through integration of process planning and production control. In: Proceedings of the 39th CIRP international seminar on manufacturing systems, the morphology of innovative manufacturing systems, Ljubljana, pp 157–161

  14. Kreutzfeldt J (1994) Planen mit Bearbeitungsalternativen in der Teilefertigung. Dissertation, Leibniz Universität Hannover

  15. Denkena B, Battino A (2006) A novel adaptive process planning framework. In: 2nd I*PROMS virtual international conference intelligent production machines and systems, July 3rd–14th, pp 487–492

  16. Kim S, Woo J, Park S, Jung B, Cho H (2002) Integrated development of nonlinear process planning and simulation-based shop floor control. In: Proceedings of the winter simulation conference, San Diego, pp 1465–1468

  17. Iwata K, Fukuda Y (1989) A new proposal of dynamic process planning in machine shop. In: Proceedings of CIRP international workshop on CAPP, September 21st–22nd, Hannover, pp 73–83

  18. Denkena B, Tracht K, Battino A (2007) Dynamic analysis of process chains as an enabler for the adaptive process planning. In: 2nd International conference on changeable, agile, reconfigurable and virtual production (CARV 2007), Toronto, pp 677–686

  19. Denkena B, Lorenzen LE, Krüger M, Schmidt J (2011) Simulation based detailed planning for agile manufacturing. In: ElMaraghy HA (ed) Enabling manufacturing competitiveness and economic sustainability. Proceedings of the 4th international conference on changeable, agile, reconfigurable and virtual production (CARV 2011), Montreal, Canada, October 2nd–5th 2011, pp 512–517

  20. Denkena B, Lorenzen LE, Kröning S (2010) Cognitive process planning. In: Proceedings of the 43rd CIRP international conference on manufacturing systems “sustainable production and logistics in global networks”, Vienna, pp 683–690

  21. Saaty TL, Vargas LG (2001) Models, methods, concepts and applications of the analytic hierarchy process. Kluwer, Boston

    Book  Google Scholar 

  22. Nyhuis P, Wiendahl HP (2002) Logistische Kennlinien, 2nd edn. Springer, Berlin

    Google Scholar 

  23. Liedtke C (2007) Systematik zur Bewertung der Produktionsleistung. Dissertation, Leibniz Universität Hannover

  24. Meixner O, Haas R (2002) Computergestützte Entscheidungsfindung: Expert Choice und AHP—innovative Werkzeuge zur Lösung komplexer Probleme. Redline Wirtschaft/Ueberreuter, Frankfurt—Vienna

  25. Lödding H (2005) Verfahren der Fertigungssteuerung: Grundlagen, Beschreibung, Konfiguration. Springer, Berlin

    Google Scholar 

  26. Schneewind J (1994) Entwicklung eines systems zur integrierten Arbeitsplanerstellung und Fertigungsfeinplanung und -steuerung für die spanende Fertigung. Dissertation, RWTH Aachen

  27. Picker C (2006) Prospektive Zeitbestimmung für nicht wertschöpfende Montagetätigkeiten. Dissertation, Technische Universität Dortmund

  28. Kletti J (2007) Konzeption und Einführung von MES-Systemen—Zielorientierte Einführungsstrategie mit Wirtschaftlichkeitsbetrachtungen, Fallbeispielen und Checklisten. Springer, Berlin

Download references

Acknowledgments

The results presented in this paper were obtained within the framework of the Collaborative Research Center (SFB) 653 “Gentelligent Components in their Lifecycle”. The authors would like to thank the German Research Foundation (DFG) for its financial and organizational support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denkena, B., Lorenzen, LE. & Schmidt, J. Adaptive process planning. Prod. Eng. Res. Devel. 6, 55–67 (2012). https://doi.org/10.1007/s11740-011-0353-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-011-0353-7

Keywords

Navigation