Skip to main content
Log in

Effects on the deep drawing diagram in micro forming

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

The limits of the processing window for deep drawing, collected in a deep drawing diagram, are affected by material behavior, process parameters and size effects. A size effect, more specific a density effect, explains the changes in forming behavior of foils with respect to the forming limit, denoted by the limiting drawing ratio. It is shown that it occurs in so called Tiffany structures. The changes in the tribology in deep drawing have an influence on the clamping limit of the processing window. The changes are induced by changes of the drawing speed. They can be explained by the lubricant pocket model only if one takes the temperature dependence of the viscosity of the lubricant into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

μ:

Coefficient of friction from Coulombs law

μeff :

Effective coefficient of friction from numerical identification using the formula by Storoshew

μff(p):

Coefficient of friction as function of contact pressure, given by the so called friction function

μH :

Coefficient of friction for hydrodynamic contact

μS :

Coefficient of friction for solid contact

μT :

Total coefficient of friction

A0 :

Macroscopic contact cross section area (mm2)

AL :

Liquid contact area (mm2)

AS :

Solid contact area (also: real contact area) (mm2)

d:

Diameter (mm)

dB,0 :

Initial blank diameter (mm)

dp :

Punch diameter (mm)

F:

Force (N)

FB :

Blank holder force (N)

FH :

Normal force transferred by hydraulic medium (N)

FN :

(Total) normal force (N)

FP :

Punch force (N)

FS :

Normal force on solid contact (N)

lp :

Punch travel distance during forming process (mm)

p:

(Contact) pressure (N/mm²)

pB :

Blank holder pressure (N/mm²)

pB,0 :

Initial blank holder pressure (N/mm²)

pL :

Lubricant pressure (N/mm²)

pS :

Pressure of solid contact (N/mm²)

r:

Radius (mm)

rD :

Drawing radius (edge radius of drawing ring) (mm)

rP :

Punch radius (radius between bottom and mantle) (mm)

s0 :

Sheet thickness (mm)

T:

Temperature (K)

T0 :

Temperature at viscosity η0 (K)

v:

Velocity (m/s)

vP :

Punch speed (m/s)

α:

Viscosity temperature index

β:

Drawing ratio (ratio of blank diameter to punch diameter)

βmax :

Limiting drawing ratio

ΔdD :

Drawing clearance (mm)

η:

Viscosity (m²/s)

η0 :

Viscosity at temperature T0 (m²/s)

ρ:

Density (g/cm³)

φmax :

Maximum strain

References

  1. Dahl W, Knopp R, Pawelski O (1993) Umformtechnik Plastomechanik und Werkstoffkunde (in German). Springer, Berlin, pp 158–173

    Google Scholar 

  2. Geiger M, Kleiner M, Eckstein R, Tieseler N, Engel U (2001) Microforming. CIRP Annal Manufact Technol 50(2):445–462

    Article  Google Scholar 

  3. Geiger M, Engel U, Vollertsen F (1992) In situ ultrasonic measurement of the real contact area in bulk metal forming processes. CIRP Annal Manufact Technol 41(1):255–258

    Article  Google Scholar 

  4. Goodwin GM (1968) Application of strain analysis to sheet metal forming problems in the press shop. SAE paper 680093

  5. Grebe M, Feinle P (2004) Reibwertuntersuchungen an Motorölen im Mikrotribometer (in German) Tribologie-Fachtagung, Reibung, Schmierung und Verschleiß Göttingen

  6. Grote K-H, Feldhusen J (2001) Dubbel Taschenbuch für den Maschinenbau (in German). Springer, Berlin, p E84

    Google Scholar 

  7. Hasek V, Lange K (1980) Forming-limit diagram and its applications in deep-drawing and stretch-forming processes (in German). Wirtsch Z Ind Fertig 70:577–580

    Google Scholar 

  8. Hol J, Cid Alfaro MV, de Rooij MB, Meinders T (2010) Multiscale fritction modeling for sheet metal forming. In: Felder E, Montmitonnet P (eds) 4th International conference on tribology in manufacturing process (ICTMP 2010). Transvalor Paris, pp 573–582

  9. Hu Z, Vollertsen F (2004) A new friction test method. J Technol Plasticity 29(1–2):1–9

    MATH  Google Scholar 

  10. Hu Z, Vollertsen F (2010) Effect of size and velocity dependent friction in deep drawing on the process window. In: Felder E, Montmitonnet P (eds) Proceedings of the 4th International conference on tribology in manufacturing processes (ICTMP (2010)). Transvalor Paris, pp 583–592

  11. Hu Z, Wielage H, Vollertsen F (2010) Effect of strain rate on the forming limit diagram of thin aluminum foil. In: Dohda K (ed) Proceedings of the International forum on micro manufacturing (IFMM’10). Nagoya Institute of Technology Nagoya (2010), pp 181–186

  12. Hu Z, Wielage H, Vollertsen F (2011) Forming behavior of thin foils. In: Duflou JR, Clarke R, Merklein M, Micari F, Shirvani B, Kellens K (eds) 14th International conference on sheet metal (SheMet11). TransTech Publication, Zurich-Durnten (2011), pp 1008–1015

  13. Janssen PJM, de Keijser ThH, Geers MGD (2006) An experimental assessment of grain size effects in the uniaxial straining of thin Al sheet with a few grains across the thickness. Mater Sci Eng A419:238–248

    Google Scholar 

  14. Justinger H, Hirt G (2007) Scaling effects in the miniaturisation of the deep drawing process. In: Vollertsen F, Yuan S (eds) International conference on new forming technologies (2nd ICNFT’07). BIAS-Verlag Bremen, pp 167–176

  15. Justinger H, Hirt G (2007) Analysis of size effects in the miniturized deep drawing process. Key Eng Mater 344:791–798

    Article  Google Scholar 

  16. Justinger H (2009) Experimentelle und numerische Untersuchung von Miniaturisierungs-einflüssen bei Umformprozessen am Beispiel Tiefziehen (in German). Shaker Verlag

  17. Keeler SR, Backofen WA (1963) Plastic instability and fracture in sheets stretched over rigid punches. Trans ASM 56:25

    Google Scholar 

  18. Kim H, Han S, Yan Q, Altan T (2008) Evaluation of tool materials, coatings and lubricants in forming galvanized advanced high strength steels (AHSS). CIRP Annal Manufact Technol 57:299–304

    Article  Google Scholar 

  19. Kim J, Hoffmann H, Golle M, Golle R (2009) Untersuchungen zum Werkstoffverhalten von sehr dünnen Kupferblechen (in German). In: Vollertsen F (ed) Größeneinflüsse bei Fertigungsprozessen. BIAS Bremen, pp 57–78

  20. Merklein M, Kuppert A, Geiger M (2010) Time dependent determination of forming limit diagrams. CIRP Annal Macufact Technol 59(1):295–298

    Article  Google Scholar 

  21. Pawelski O, Lueg W (1961) Versuche und Berechnungen über das Ziehen und Einstoßen von Rundstäben (in German). Stahl u. Eisen 81(25):1729–1739

    Google Scholar 

  22. Penazzi L, Yang G, Levaillant C, Le Floch A (1996) Assessment of thermal effect in the sheet metal forming process. 19th IDDRG Biennial Congress, pp 287–293

  23. Pfestdorf M (1997) Funktionale 3D-Oberflächenkenngrößen in der Umformtechnik (in German). Meisenbach Verlag, Bamberg

    Google Scholar 

  24. Putz A (2006) Grundlegende Untersuchungen zur Erfassung der realen Vorspannung von armierten Kaltfließpresswerkzeugen mittels Ultraschall (in German). Meisenbach Verlag, Bamberg, p 85

    Google Scholar 

  25. Schulze Niehoff H, Vollertsen F (2007) Versatile microforming press. In: Vollertsen F, Yuan S (eds) International conference on new forming technologies (2nd ICNFT’07). BIAS-Verlag, Bremen, pp 167–176

  26. Schulze Niehoff H (2008) Entwicklung einer hochdynamischen, zweifachwirkenden Mikroumformpresse (in German). BIAS-Verlag, Bremen

    Google Scholar 

  27. Schulze Niehoff H, Hu Z, Vollertsen F (2008) Einflüsse von Größeneffekten auf das Grenzziehverhältnis In: Steinhoff K, Kopp R (eds) Der Pawelski—Umformtechnik im Spannungsfeld zwischen Plastomechanik und Werkstofftechnik. Hrsg. GRIPS media GmbH Bad Harzburg, pp 207–215

  28. Sobis T, Engel U, Geiger M (1992) A theoretical study of wear simulation in metal forming processes. J Mater Process Technol 34:233–240

    Article  Google Scholar 

  29. Storoschew MW, Popow EA (1968) Grundlagen der Umformtechnik. VEB Verlag Technik, Berlin

    Google Scholar 

  30. Vollertsen F, Hu Z (2007) On the drawing limit in micro deep drawing. J Technol Plasticity 32(1/2):1–11

    Google Scholar 

  31. Vollertsen F (2008) Categories of size effects. Product Eng 2(4):377–383

    Article  Google Scholar 

  32. Vollertsen F, Biermann D, Hansen HN, Jawahir IS, Kuzman K (2009) Size effects in manufacturing of metallic components. CIRP Annal Manufact Technol 58(2):566–587

    Article  Google Scholar 

  33. Vollertsen F, Hu Z, Wielage H, Blaurock L (2010) Fracture limits of metal foils in micro forming. In: Hinduja S, Li L (eds) 36th International MATADOR conference. Springer, London, pp 49–52

  34. Vollertsen F (2011) Size effects in micro forming. In: Duflou JR, Clarke R, Merklein M, Micari F, Shirvani B, Kellens K (eds) 14th International conference on sheet metal (SheMet11). TransTechPublication, Zurich-Durnten, pp 3–12

  35. Wielage H (in print) Hochgeschwindigkeitsumformen durch laserinduzierte Schockwellen. Series Strahltechnik, BIAS, Bremen

Download references

Acknowledgments

The author is grateful for the financial support of the Deutsche Forschungsgemeinschaft (DFG) of the projects B1 and B3 of the Collaborative Research Center SFB 747, where the results were obtained. The author also thanks for support by Dipl.-Ing. S. Grünenwaldand Dr.-Ing. Z. Hu whilepreparingthismanuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Vollertsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vollertsen, F. Effects on the deep drawing diagram in micro forming. Prod. Eng. Res. Devel. 6, 11–18 (2012). https://doi.org/10.1007/s11740-011-0355-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-011-0355-5

Keywords

Navigation