Skip to main content
Log in

Designing superplastic forming process of a developmental AA5456 using pneumatic bulge test experiments and FE-simulation

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Relatively low tooling costs, high design complexity coupled with low forming speeds make the superplastic sheet metal forming process attractive, especially for smaller lot sizes. Due to the relatively small lot size, the effort and budget for designing superplastic forming processes is usually limited (Kappes and Liewald in J Mater Sci Eng B1:472–478, 2011). For this reason the tool design and corresponding pressure profiles in superplastic forming processes are often based on trial and error (Franchitti et al. in 11th international Esaform conference on material forming, 2008; Barnes in J Mater Eng Perform 4:440–454, 2007). Consequently a process chain should be established to design superplastic forming processes accurately and efficiently. This paper deals with the process chain to form an aluminium part superplastically. At the beginning of the process chain, there is a new, developmental aluminium alloy sheet (AA5456, s0 = 1.6 mm) designed for superplastic forming supplied by Hydro Aluminium Rolled Products GmbH. The relevant material parameters of this sheet are then determined via pneumatic bulge testing with and without in situ measurement of strains. Using these experimentally determined parameters superplastic forming process can be simulated by FE modelling (PAM-STAMP 2G). Due to in situ measurement of strains during pneumatic bulging, the comparison of experiment and FE-simulation results over the whole pneumatic bulging process could be done. This comparison shows good correlation for the observed conditions. Furthermore a cylindrical cup was simulated, evaluated via determined isobar Superplastic Forming Limit Curve (at fracture) and finally formed by pneumatic bulging. Material characterisation of the bottom of this cup showed that excessive cavitation was observed as a result of the iron-silicon particles. Superplastic forming of a bracket usually formed out of AA5083 was also simulated using material parameters of AA5456. The simulation was able to show that this part is not able to be manufactured out of AA5456 under these forming conditions, which was confirmed by forming trials performed at ALU-SPF AG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Kappes J, Liewald M (2011) Evaluation of pneumatic bulge test experiments and corresponding numerical forming simulations. J Mater Sci Eng B1:472–478

    Google Scholar 

  2. Franchitti S, Giuliano G, Palumbo G, Sorgente D, Tricarico L (2008) On the optimisation of superplastic free forming test of an AZ31 magnesium alloy sheet. In: 11th international Esaform conference on material forming

  3. Barnes AJ (2007) Superplastic forming 40 years and still growing. J Mater Eng Perform 4:440–454

    Article  Google Scholar 

  4. Banabic D, Vulcan M, Siegert K (2005) Bulge testing under constant and variable strain rates of superplastic aluminium alloys. In: 11th CIRP conference, Antalya, pp 205–209

  5. Vulcan M (2006) Der pneumatische Tiefungsversuch und seine Anwendung in der superplastischen Aluminium-Blechumformung. Dissertation, DGM Informationsgesellschaft Verlag, Oberusel

  6. Liewald M, Kappes J, Pop R (2008) Superplastic forming of magnesium alloys. In: 65th annual world magnesium conference, pp 115–121

  7. Neugebauer R, Altan T, Geiger M, Kleiner M, Sterzing A (2006) Sheet metal forming at elevated temperatures. Ann CIRP 55:793–816

    Article  Google Scholar 

  8. Tolazzi M (2010) Hydroforming applications in automotive: a review. Int J Mater Form 3(Supplement 1):307–310. doi:10.1007/s12289-010-0768-2, Springer, France

    Google Scholar 

  9. Carter JT, Krajewski PE, Verma R (2008) The hot blow forming of AZ31 Mg sheet: formability assessment and application development. J Miner Metals Mater Soc 60(11):77–81

    Article  Google Scholar 

  10. Alderman M, Barnes AJ, Bhayani R, Cottam R (2009) Superplastic forming of magnesium sheet alloys. In: IMA 2009 Taiyuan global magnesium conference and exhibition, proceedings, pp 206–215

  11. Giuliano G, Franchitti S (2008) The determination of material parameters from superplastic free-bulging tests at constant pressure. Int J Mach Tools Manuf 48:1519–1522

    Article  Google Scholar 

  12. Abu-Farha FK, Shuaib NA, Khraisheh MK, Weinmann KJ (2008) Limiting strains of sheet metals obtained by pneumatic stretching at elevated temperatures. CIRP Ann Manuf Technol 57:275–278

    Article  Google Scholar 

  13. Diehl A, Vierzigmann U, Engel U (2009) Characterisation of the mechanical behaviour and the forming limits of metal foils using a pneumatic bulge test. Int J Mater Form 2(Supplement 1):605–608. doi:10.1007/s12289-009-0608-4, Springer/ESAFORM

    Google Scholar 

  14. Abu-Farha FK, Nazzal M, Curtis R (2010) The effects of specimen geometry on the accuracy of tensile testing of metallic superplastic materials. Key Eng Mater 433:325–331

    Article  Google Scholar 

  15. Abu-Farha FK, Khraisheh MK (2007) Mechanical characteristics of superplastic deformation of AZ31 magnesium alloy. J Mater Eng Perform 16(2):192–199

    Article  Google Scholar 

  16. Blandin JJ (2007) Superplastic forming of magnesium alloys: production of microstructures, superplastic properties, cavitation behaviour. Mater Sci Forum 551–552:211–217

    Article  Google Scholar 

  17. Draugelates U, Schram A, Kedenburg C–C (2001) Superplastische Eigenschaften einer konventionellen AM20-Magnesiumlegierung. Materialwissenschaft und Werkstofftechnik 32:S. 84–S. 87, WILEY-VCH Verlag GmbH, Weinheim

  18. Galiyev A, Kaibyshev R (2004) Superplasticity in a magnesium alloy subjected to isothermal rolling. Scripta Mater 51:89–93

    Article  Google Scholar 

  19. Iwasaki H, Mori T, Mabuchi M, Tagata T, Higashi K (2001) Temperature and strain-rate dependence of elongation in Al—4.5 Mg alloy. Mater Sci Forum 357–359:153–158

    Article  Google Scholar 

  20. Khraisheh MK, Abu-Farha FK, Weinmann KJ (2007) Investigations of post-superplastic forming properties of AZ31 magnesium alloy. Ann CIRP 56:289–292

    Article  Google Scholar 

  21. Khraisheh MK, Abu-Farha FK, Nazzal MA, Weinmann KJ (2006) Combined mechanics-materials based optimization of superplastic forming of magnesium AZ31 alloy. CIRP Ann Manuf Technol 55(1):233–236

    Article  Google Scholar 

  22. Sorgente D, Tricarico L (2007) Analysis of different specimen geometries for tensile tests in superplastic conditions for an aluminium alloy. Mater Sci Forum 551–552:123–128

    Article  Google Scholar 

  23. Abu-Farha FK, Rawashdeh NA, Khraisheh MK (2007) Superplastic deformation of magnesium alloy AZ31 under biaxial loading condition. Mater Sci Forum 551–552:219–224

    Article  Google Scholar 

  24. Aoura Y, Ollivier D, Ambari A, del Santo P (2004) Determination of material parameters for 7475 Al alloy from bulge forming tests at constant stress. J Mater Process Technol 145:352–359

    Article  Google Scholar 

  25. Chan KC, Chow KK (2002) Analysis of hot limit strains of a superplastic 5083 aluminum alloy under biaxial tension. Int J Mech Sci 44:1467–1478

    Article  Google Scholar 

  26. Chung SW, Higashi K, Kim WJ (2004) Superplastic gas pressure forming of fine-grained AZ61 magnesium alloy sheet. Mater Sci Eng A 372:15–20

    Article  Google Scholar 

  27. Giuliano G (2009) Thickness and strain rate at the sheet dome apex in superplastic bulge forming tests. In: 12th international Esaform conference on material forming

  28. Kulas M-A, Krajewski PE, Bradley JR, Taleff EM (2007) Forming limit diagrams for AA5083 under SPF and QPF conditions. Mater Sci Forum 551–552:129–134

    Article  Google Scholar 

  29. Sorgente D, Scintilla LD, Palumbo G, Tricarico L (2010) Blow forming of AZ31 magnesium alloy at elevated temperatures. Int J Mater Form 3(1):13–19

    Article  Google Scholar 

  30. Liewald M, Kappes J (2011) Challenging in situ strain measurement in pneumatic bulging of AA5083. In: 14th international Esaform conference on material forming, AIP conf. proc. 1353:307–312

  31. Kappes J, Wagner S, Schatz M (2010) Superplastic sheet metal forming with focus on the warm bulge test and its in-process monitoring. Int J Mater Form 3(Supplement 1):1135–1138. doi:10.1007/s12289-010-0972-0, Springer, France

  32. Doege E, Behrens B-A (2007) Handbuch Umformtechnik. Springer, Berlin

    Google Scholar 

  33. Hecht J (2007) Werkstoffcharakterisierung und Prozessauslegung für die wirkmedienbasierte Doppelblech-Umformung von Magnesiumlegierungen. Meisenbach Verlag, Bamberg

    Google Scholar 

  34. Kaya S, Altan T, Groche P, Klöpsch C (2008) Determination of the flow stress of magnesium AZ31-O sheet at elevated temperatures using the hydraulic bulge test. Int J Mach Tools Manuf 48:550–557

    Article  Google Scholar 

  35. Keller S, Hotz W, Friebe H (2009) Yield curve determination using the bulge test combined with optical measurement. In: IDDRG 2009 international conference, 1–3 June 2009, Golden, CO, USA

  36. GOM mbH (2010) Berechnung der Fließspannung im Bulge Versuch, Aramis, SView Benutzerhandbuch

  37. Vucetic M, Bouguecha A, Peshekhodov I, Götze T, Huinink T, Friebe H, Möller T, BehrensB-A (2011) Numerical validation of analytical biaxial true stress—true strain curves from the bulge test. In: The 8th international conference and workshop on numerical simulation of 3D sheet metal forming processes, AIP conf. proc. 1383:107–114

  38. Padmanabhan KA, Vasin RA, Enikeev FU (2001) Superplastic flow: phenomenology and mechanics. ISBN 3-540-67842-5, Springer, Berlin, pp 71–74

  39. Elsenheimer D, Groche P (2009) Determination of material properties for hot hydroforming. Prod Eng Res Dev 3:165–174

    Article  Google Scholar 

  40. ESI Group (2009) PAM-STAMP 2G & PAM-TUBE 2G user guide

Download references

Acknowledgments

This work on the superplastic forming process of the Hydro Aluminium Rolled Products GmbH, the IFU and the ALU-SPF AG was kindly supported by the following companies: ESI (Engineering System International) GmbH, GOM (Gesellschaft für Optische Messtechnik mbH) and ViALUX GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Kappes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kappes, J., Liewald, M., Jupp, S. et al. Designing superplastic forming process of a developmental AA5456 using pneumatic bulge test experiments and FE-simulation. Prod. Eng. Res. Devel. 6, 219–228 (2012). https://doi.org/10.1007/s11740-012-0363-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-012-0363-0

Keywords

Navigation