Skip to main content
Log in

Thermal simulation of the consolidation process of textile-reinforced thermoplastic components using homogenized parameters

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

The optimum mold tool design for the consolidation of textile reinforced thermoplastic components requires the calculation of process times in development stage. A reduction of modeling effort can be achieved by homogenization of the thermal model parameters heat conductivity, specific heat capacity and density. On the example of braided hollow sections, consisting of glass-polypropylene-hybrid yarn, which includes reinforcement fibers and matrix material, the homogenization of these thermal model parameters is described. The comparison of simulated and measured temperature profiles of the consolidation process shows the applicability of this homogenization technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Phillips R, Aküz DA, Manson JAE (1998) Prediction of consolidation of woven fibre-reinforced thermoplastics composites. Part I. Isothermal case. Compos Part A Appl Sci Manuf 29:395–402

    Article  Google Scholar 

  2. Steggall-Murphy C, Simacek P, Advani SG, Yarlagadda S, Walsh S (2010) A model for thermoplastic melt impregnation of fiber bundles during consolidation of powder-impregnated continuous fiber composites. Compos Part A Appl Sci Manuf 41:93–100

    Article  Google Scholar 

  3. Young WB (1995) Resin Flow analysis in the consolidation of multi-directional laminated composites. Polym Compos 16:250–257

    Article  Google Scholar 

  4. Yan X (2006) Consolidation and cure simulations for laminated composites. J Compos Mater 40:1853–1869

    Article  Google Scholar 

  5. Lee SE, Yoo JS, Kang JH, Kim CG (2009) Prediction of the thermal conductivities of four-axial non-woven composites. Compos Struct 89:262–269

    Article  Google Scholar 

  6. Ismail MI (1988) Heat transfer through textile fabrics: mathematical model. Appl Math Model 12:434–440

    Article  MATH  Google Scholar 

  7. Bhattacharjee D, Kothari VK (2009) Heat transfer through woven textiles. Int J Heat Mass Transf 52:2155–2160

    Article  MATH  Google Scholar 

  8. Carson JK, Lovatt SJ, Tanner DJ, Cleland AC (2005) Thermal conductivity bounds for isotropic, porous materials. Int J Heat Mass Transf 48:2150–2158

    Article  MATH  Google Scholar 

  9. McIvor SD, Darby MI, Wostenholm GH, Yates B, Banfield L, King R, Webb A (1990) Thermal conductivity measurements of some glassfibre- and carbonfibre-reinforced plastics. J Mater Sci 25:3127–3132

    Article  Google Scholar 

  10. Bigaud D, Goyhénèche JM, Hamelin P (2001) A global-local non-linear modelling of effective thermal conductivity tensor of textile-reinforced composites. Compos Part A Appl Sci Manuf 32:1443–1453

    Article  Google Scholar 

  11. Großmann K, Mühl A, Rehn S (2009) Variotherme Prozesse beim Konsolidieren textilverstärkter thermoplastischer Hohlprofile. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb 104:242–249

    Google Scholar 

  12. Menges G, Haberstroh E, Michaeli W, Schmachtenberg E (2002) Werkstoffkunde Kunststoffe. Hanser, München

    Google Scholar 

  13. Moneke M (2001) Die Kristallisation von verstärkten Thermoplasten während der schnellen Abkühlung und unter Druck. Dissertation, Technische Universität Darmstadt

  14. Zhang X, Hendro W, Fujii M, Tomimura T, Imaishi N (2002) Measurements of the thermal conductivity and thermal diffusivity of polymer melts with the short-hot-wire method. Int J Thermophys 23:1077–1090

    Article  Google Scholar 

  15. Dos Santos WN (2007) Thermal properties of polymers by non-steady techniques. Polym Test 26:556–566

    Article  Google Scholar 

  16. VDMA (1979) Kenndaten für die Verarbeitung thermoplastischer Kunststoffe, 1. Thermodynamik, Hanser München-Wien

    Google Scholar 

  17. AGY Holding Corp (2006) High strength glass fibers. Technical paper. http://www.agy.com/technical_info/graphics_PDFs/HighStrengthTechPaperEng.pdf. Accessed June 22, 2011

  18. Kent EF (2009) Numerical analysis of laminar natural convection in isosceles triangular enclosures. Mech Res Commun 36:497–508

    Article  Google Scholar 

  19. VDI-Gesellschaft (2006) VDI Wärmeatlas, 10th revised edition. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

The described composite component is subject of BMBF—interdisciplinary project ToHoP, project number 02Pu2090 (Germany Federal Ministry of Education and Research). The homogenization techniques were partly developed in the subproject D4 of SFB 639 (German Research Foundation). The financial supports for these projects are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knut Großmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Großmann, K., Kalisch, S., Mühl, A. et al. Thermal simulation of the consolidation process of textile-reinforced thermoplastic components using homogenized parameters. Prod. Eng. Res. Devel. 6, 251–257 (2012). https://doi.org/10.1007/s11740-012-0384-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-012-0384-8

Keywords

Navigation