Skip to main content
Log in

Process stabilization with an adaptronic spindle system

  • Machine Tool
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

For economical reasons it is necessary to reduce the machining time and to increase the process automation. This leads to the need for fast machine tools with high process stability in order to enhance the material removal rate. However, the machine often does not limit the process stability but the tool because of its compliance. This paper presents a new possibility of expanding the stable process range of long and slender end mills with an adaptronic spindle system. The system is able to position the spindle dynamically in the range of microns with three piezo actuators. In order to disturb the regenerative effect, which leads to an instable process, the chip thickness is modulated by a dynamic spindle actuation. This is realized by a superposition of vibrations of the tool in feed direction. In milling tests the degree of stabilization is verified for different superpositions. Hence, the stable process range could be improved for spindle speeds up to 5,000 rpm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Neugebauer R, Denkena B, Wegener K (2007) Mechatronic systems for machine tools. Ann CIRP 56(2):657–686

    Article  Google Scholar 

  2. Weck M, Brecher C (2006) Werkzeugmaschinen 3, Vol. 6., neu bearbeitete Auflage, Ch. 6 Prozessüberwachung, Prozessregelung, Diagnose und Instandhaltungsmaßnahmen, Springer, Berlin, pp 267–404

  3. Altintas Y, Weck M (2004) Chatter stability of metal cutting and grinding. CIRP Ann Manuf Technol 53(2):619–642

    Article  Google Scholar 

  4. Altintas Y, Brecher C, Weck M, Witt S (2005) Virtual machine tool. CIRP Ann Manuf Technol 54(2):115–138

    Article  Google Scholar 

  5. Weinert K, Kersting P, Surmann T, Biermann D (2008) Modeling regenerative workpiece vibrations in five-axis milling. Prod Eng Res Dev 2:255–260

    Article  Google Scholar 

  6. Denkena B, de Leon L, Grove T (2010) Prozessstabilität eines kordelierten Schaftfräsers. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, Band 105(Heft 1/2):37–41

    Google Scholar 

  7. Weck M, Brecher C (2006) Werkzeugmaschinen 5—Messtechnische Untersuchung und Beurteilung, dynamische Stabilität, vol 7, neu bearbeitete Auflage. Springer, Berlin

  8. Altintas Y (2000) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press, Cambridge

    Google Scholar 

  9. Brecher C, Esser M (2008) The consideration of dynamic cutting forces in the stability simulation of hpc-milling processes. In: Proceedings of the 1st international conference on process machine interactions. pp 7–14

  10. Zatarain M, Bediaga I, Munoa J, Lizarralde R (2008) Stability of milling processes with continuous spindle speed variation: analysis in the frequency and time domains, and experimental correlation. CIRP Ann Manuf Technol 57:379–384

    Article  Google Scholar 

  11. Smith S, Tlusty J (1992) Stabilizing chatter by automatic spindle speed regulation. CIRP Ann Manuf Technol 41:433–436

    Article  Google Scholar 

  12. Sims N, Mann B, Huyanan S (2008) Analytical prediction of chatter stability for variable pitch and variable helix milling tools. J Sound Vib 317:644–686

    Article  Google Scholar 

  13. Altintas Y, Engin S, Budak E (1999) Analytical stability prediction and design of variable pitch cutters. ASME J Manuf Sci Eng 121:173–178

    Article  Google Scholar 

  14. Kern S, Schiffler A, Nordmann R, Abele E (2007) Adaptronische hybridgelagerte Motorspindel zur ratterfreien HSC-Bearbeitung. VDI-Berichte 1971:307–320

    Google Scholar 

  15. Ries M (2009) Aktive Motorspindel zur Unterdrückung von Ratterschwingungen im Fräsprozess, Fortschritt-Berichte VDI Reihe 2, Fertigungstechnik 670. VDI-Verlag, Düsseldorf

    Google Scholar 

  16. Denkena B, Bickel W, Ponick B, Emmrich J (2011) Dynamic analysis of a motor-integrated method for a higher milling stability. Prod Eng Res Dev 5:691–699

    Article  Google Scholar 

  17. Drossel W-G, Wittstock V (2008) Adaptive spindle support for improving machining operations. CIRP Ann Manuf Technol 57(1):395–398

    Article  Google Scholar 

  18. Rashid A, Nicolescu CN (2006) Active vibration control in palletised workholding system for milling. Int J Mach Tools Manuf 46:1626–1636

    Article  Google Scholar 

  19. Abele E, Hanselka H, Haase F, Schlote D, Schiffler A (2008) Development and design of an active work piece holder driven by piezo actuators. Prod Eng Res Dev 2:437–442

    Article  Google Scholar 

  20. Brecher C, Manoharan D, Ladra U, Köpken H-G (2010) Chatter suppression with an active workpiece holder. Prod Eng Res Dev 4:239–245

    Article  Google Scholar 

  21. Hesselbach J (2011) Adaptronik in Werzeugmaschinen—Forschung in Deutschland. Shaker Verlag, ISBN 978-3-8322-9809-8

  22. Denkena B, Möhring H-C, Will JC (2007) Tool deflection compensation with an adaptronic milling spindle. International Conference on Smart Machining Systems ICSMS, Gaithersburg

    Google Scholar 

  23. Will JC (2008) Adaptronische Spindeleinheit zur Abdrängungs- und Schwingungskompensation in Fräsprozessen. Dr.-Ing. dissertation, Leibniz Universität Hannover

  24. Denkena B, Gümmer O, Sellmeier V (2009) Static and dynamic stabilisation of a milling process by an adaptronic spindle system for milling machines. Adaptronic Congress Conference Proceedings, Berlin

    Google Scholar 

  25. Denkena B, Gümmer O (2009) Enhancement of the static and dynamic compliance of a milling machine by an adaptronic spindle system. In: Proceedings of 9th international conference of the European Society for Precision Engineering and Nanotechnology, vol. 1. pp 333–336

  26. Denkena B, Gümmer O, Will J C, Hackeloöer F (2008) Compensation of static and dynamic tool deflections during milling processes by an adaptronic spindle system. In: 2nd international conference of innovative cutting processes & smart machining, Cluny, Burgundy, France, 22–23 Oct 2008

  27. Möhring H-C, Litwinski K, Gümmer O (2010) Process monitoring with sensory machine tool components. CIRP Ann Manuf Technol 59:383–386

    Article  Google Scholar 

  28. Denkena B, Gümmer O, Will J C (2011) Adaptronische Spindeleinheit für Fräsmaschinen. Adaptronik für Werkzeugmaschinen—Forschung in Deutschland. Shaker Verlag, ISBN: 978-3-8322-9809-8: 343–363

  29. Denkena B, de Leon L, Sellmeier V (2008) Impact of the tooth pitch on the process stability of milling. In: Proceedings of the 1st international conference on process machine interactions. pp 73–82

Download references

Acknowledgments

The authors would like to thank the German Research Foundation (DFG) for their support and funding of the associated project within the priority program SPP 1156 “Adaptronics in machine tools”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Gümmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denkena, B., Gümmer, O. Process stabilization with an adaptronic spindle system. Prod. Eng. Res. Devel. 6, 485–492 (2012). https://doi.org/10.1007/s11740-012-0397-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-012-0397-3

Keywords

Navigation