Skip to main content
Log in

Mechanical flange forming in steel and copper foil

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Flange forming is a process which is wide spread in macro range for blanks with thicknesses from less than 1 mm up to several millimeters. Flange formed geometries are used as preforms for threads but also as device to give guidance and contact face to bolts and axles in sheet metal. A great advantage of flange forming compared to other machining processes is low process cycle time combined with high material utilization. Thus, a reasonable repertoire of knowledge has been gained for flange forming in macro range. Due to ongoing miniaturization of today’s products, flange forming is an interesting process applicable in micro range as well whereas size effects do not generally allow transfer of process limits from macro to micro range. Therefore the maximum flaring ratio for flange forming in micro range for sheet metal foil of 10–25 μm for a stainless steel 1.4301 and Copper E-Cu58 is investigated and compared with results in macro range. It is shown that the maximum flaring ratio decreases with decreasing sheet metal thickness. The resulting flange heights of experiments are compared with theoretical estimations which show a good accordance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sanders R (2003) Physicists build world’s smallest motor using nanotubes and etched silicon. http://berkeley.edu/news/media/releases/2003/07/23_motor.shtml. Accessed 15 May 2012

  2. da Silva AK, Kobayashi MH, Coimbra CFM (2006) Optimal design of non-newtonian micro-scale viscous pumps for biomedical devices. Wiley Inter Sci. doi:10.1002/bit.21165

    Google Scholar 

  3. Masuzawa T (2000) State of the art of micromachining. Ann CIRP 49:473–488

    Article  Google Scholar 

  4. Vollertsen F, Hu Z (2007) On the drawing limit in micro deep drawing. J Technol Plast 32(1/2):1–11

    Google Scholar 

  5. Vollertsen F, Walther R (2008) Energy balance in laser-based free form heading. Ann CIRP 57:291–294

    Article  Google Scholar 

  6. Vollertsen F (2011) Size effects in micro forming. 14th International Conference on Sheet Metal (Sheet Metal 2011), eds.: Duflou J.R, Clarke R, Merklein M, Micari F, Shirvani B, Kellens K. Trans Tech Publications Zürich-Durnten, pp 3–12

  7. Hu Z, Vollertsen F (2009) Größenabhängige FEM-Simulation für die Blechumformung. In: Vollertsen F (ed) Größeneinflüsse bei Fertigungsprozessen. Abschlusskolloquium Prozessskalierung, BIAS-Verlag, pp 57–78

    Google Scholar 

  8. Yamaguchi K, Sagrado R, Takakura N, Lizuka T (2002) Effect of thickness on the restoration behavior of sheet metals subjected to bulge deformation, ICTP. Int Conf Technol Plast 7:997–1002

    Google Scholar 

  9. Tracht K, Weikert F, Hanke T, Kuhfuß B, Hellwig C (2011) Modeling of linked parts in micro-forming transformation of product-defining data into a product model for ladder type linked parts. wt Werkstattstechnik online 101 pp 765–769

  10. Spur G, Stöferle T (1985) Handbuch der Fertigungstechnik – Umformen, Zerteilen. Band 2. Carl Hanser Verlag. München, Wien

  11. Wilken R (1957) Das Biegen von Innenborden mit Stempeln. Technical University of Hannover, Dissertation

    Google Scholar 

  12. Vollertsen F (2008) Categories of size effects. Prod Eng Res Develop 2(4):377–383

    Article  Google Scholar 

  13. Hu Z, Vollertsen F (2010) Effect of size and velocity dependent friction in deep drawing on the process window. 4th International Conference on Tribology in Manufacturing Processes (ICTMP2010), eds.: Felder E, Montmitonnet P. Transvalor Paris pp 583–592

  14. Schlagau S (1988) Verfahrensverbesserung beim Kragenziehen durch Überlagerung von Druckspannungen. Dissertation, TH Darmstadt

    Google Scholar 

  15. Klocke F, König W (2006) Fertigungsverfahren—Umformen. Springer-Verlag, Berlin

    Google Scholar 

  16. Erhardt R (2004) Laserunterstütztes Umformen miniaturisierter Bauteile am Beispiel des Tief- und Kragenziehen. Technical University of Darmstadt, Dissertation

    Google Scholar 

  17. Lange K (1990) Umformtechnik, Handbuch für Industrie und Wissenschaft Band 3. Springer-Verlag, Berlin

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by Deutsche Forschungsgesellschaft (DFG, German Research Foundation) for Subprojekt A3 “Stoffanhäufen” within the SFB 747 (Collaborative Research Centre) “Mikrokaltumformen—Prozesse, Charakterisierung, Optimierung”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Brüning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brüning, H., Vollertsen, F. Mechanical flange forming in steel and copper foil. Prod. Eng. Res. Devel. 6, 551–558 (2012). https://doi.org/10.1007/s11740-012-0412-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-012-0412-8

Keywords

Navigation