Skip to main content
Log in

Simulative investigation of point diffraction interferometry with regard to machine tool calibration

  • Machine Tool
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

One major effect that can deteriorate the geometric accuracy of a calibrated machine tool is the elastic deformation of its structure due to heat transferred into it. Different solutions to this problem have been presented in the past—e.g. temperature-controlled structural parts and environments—but they are complex and expensive. In an on-going Collaborative Research Centre funded by the German Research Foundation scientists are working on model-based compensation and correction strategies. In this paper, a different approach is discussed using point diffraction interferometry to directly measure the three-dimensional distance between tool centre point and workpiece coordinate system. Commercially available three-dimensional measurement systems are introduced representing the state of the art before explaining the basics of point diffraction interferometry. Different parameters are investigated using simulation tools and the achievable accuracy of the approach is evaluated. Additionally, some suggestions are made concerning hardware requirements of a planned demonstrator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kinkel S, Lay G (2006) Technologietrends in der Produktion: Praxis der Anlagenmodernisierung in der deutschen Metall- und Elektroindustrie. Mitteilungen aus der Produktionsinnovationserhebung 39, Fraunhofer Institut für System—und Innovationsforschung (ISI), Karlsruhe

  2. Schwenke H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F (2008) Geometric error measurement and compensation of machines—an update. CIRP Ann 57(2):660–675. doi:10.1016/j.cirp.2008.09.008

    Article  Google Scholar 

  3. Bryan J (1990) International status of thermal error research. CIRP Ann 39(2):645–656. doi:10.1016/S0007-8506(07)63001-7

    Article  MathSciNet  Google Scholar 

  4. Weck M, Brecher C (2006) Werkzeugmaschinen 5—messtechnische untersuchung und beurteilung, dynamische stabilität. Springer, Heidelberg

    Google Scholar 

  5. Brecher C, Hirsch P (2004) Compensation of thermo-elastic machine tool deformation based on control internal data. CIRP Ann 53(1):299–304. doi:10.1016/S0007-8506(07)60702-1

    Article  Google Scholar 

  6. Großmann K (2012) Thermo-energetische gestaltung von werkzeugmaschinen. ZWF 107(5):307–314

    Google Scholar 

  7. Großmann K (2012) Energieeffizient zerspanen. Maschine + Werkzeug 113(4):78–79

    Google Scholar 

  8. Hedges T, Takagi H, Pratt T, Sobel MJ (2001) Position measurement system and method using cone math calibration. Patent, US6535282B2

  9. Wang Z, Mastrogiacomo L, Franceschini F, Maropoulos P (2011) Experimental comparison of dynamic tracking performance of iGPS and laser tracker

  10. Müller T, Schwendemann J (2012) iGPS—ein vielseitiges Messsystem hoher Genauigkeit. avn 119(4):146–157

    Google Scholar 

  11. Muelaner JE, Wang Z, Martin O, Jamshidi J, Maropoulos P (2010) Verification of the indoor GPS system, by comparison with calibrated coordinates and by angular reference. J Intell Manuf (Online First: 12/06/2010)

  12. Depenthal C, Schwendemann J (2009) iGPS—a new system for static and kinematic measurements. In: Grün A, Kahmen H (ed) Optical 3-D Measurement techniques IX, Vienna

  13. Schmitt R, Nisch S, Schönberg A, Demeester F, Renders S (2010) Performance evaluation of iGPS for industrial applications. In: Mautz R, Ingensand H, Kunz M (ed) Proceedings of the 2010 international conference on indoor positioning and indoor navigation, Zurich, IEEE, New York

  14. Spath D (2002) ACCOMAT—die genauigkeitsgeregelte Maschine. Abschlussbericht zum BMBF-Leitprojekt ACCOMAT (1998–2002). Final report, University of Karlsruhe

  15. Weule H, Plutowsky A, Höller F, Spieweck M, Werner J (2001) A three-degree-of-freedom measurement system for machine tools. Prod Eng Res Devel 8(2):95–98

    Google Scholar 

  16. Schmalzried S (2007) Dreidimensionales optisches messsystem für eine effizientere geometrische Maschinenbeurteilung. Dissertation, University of Karlsruhe, Shaker, Aachen

  17. Plutowsky A (2002) Charakterisierung eines optischen messsystems unter den bedingungen des Arbeitsraums einer werkzeugmaschine. Dissertation, University of Karlsruhe

  18. Steel WH (1983) Interferometry. University Press, Cambridge

    Google Scholar 

  19. Bruning JH (1978) Fringe Scanning Interferometers. In: Malacara D (ed) Optical shop testing. Wiley, New York, pp 409–437

    Google Scholar 

  20. Ghiglia DC, Pritt MD (1998) Two-dimensional phase unwrapping. Wiley, New York

    MATH  Google Scholar 

  21. Kim S-W, Yang DY (2001) New design of precision CMM based upon volumetric phase-measuring interferometry. CIRP Ann 50(1):357–360. doi:10.1016/S0007-8506(07)62139-8

    Article  Google Scholar 

  22. Rhee H-G, Kim S-W (2002) Absolute distance measurement by two-point-diffraction interferometry. Appl Opt 41:5921–5928. doi:10.1364/AO.41.005921

    Article  Google Scholar 

  23. Rhee H-G, Chu J, Lee Y-W (2007) Absolute three-dimensional coordinate measurement by the two-point diffraction interferometry. Opt Express 15(8):4435–4444. doi:10.1364/OE.15.004435

    Article  Google Scholar 

  24. Fletcher R (1987) Practical methods of optimization. Wiley, New York

    MATH  Google Scholar 

  25. Young M (2000) Optics and lasers: including fibers and optical wave guides. Springer, Berlin

    Google Scholar 

  26. Brecher C, Klein W, Linder F (2011) Verfahren und System zur Korrektur der Position eines durch eine Steuerung bewegten Objektes. Pending patent, DE102011011286A1

  27. DIN ISO 10791 (2001) Machine tools—test conditions for machining centres. DIN German institute for standardization (ed)

  28. Edlén B (1966) The refractive index of air. Metrologia 2:71–80

    Article  Google Scholar 

  29. Birch KP, Downs MJ (1994) Correction of the updated Edlén equation for the refractive index of air. Metrologia 31:315–316

    Article  Google Scholar 

  30. Lide DR (ed) (2003) CRC handbook of chemistry and physics. A ready-reference book of chemical and physical data. Tayler & Francis, Boca Raton, FL

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the European Commission for funding this work as part of Project Chameleon within the 7th Framework Programme of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Lindner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brecher, C., Krella, C. & Lindner, F. Simulative investigation of point diffraction interferometry with regard to machine tool calibration. Prod. Eng. Res. Devel. 7, 309–318 (2013). https://doi.org/10.1007/s11740-012-0432-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-012-0432-4

Keywords

Navigation