Skip to main content
Log in

Integration of heat treatment into the process chain of a mill turn center by enabling external cylindrical grind-hardening

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

The modern mill turn center enables the manufacturing of complex cylindrical parts on a single machine tool. In many cases, complete machining is inhibited by using conventional heat treatment processes, e.g. induction hardening, which cannot be included in the metal-cutting process chain. An innovative approach for surface hardening is the grind-hardening process, which uses the heat generated during material removal with geometrically undefined cutting edges to realize a martensitic phase transformation within the surface layer. This paper presents a methodology for applying the grind-hardening process to a conventional mill turn center. The process layout is supported using numerical methods, e.g. the finite element method. The recommended process strategy eliminates the process-specific hardness slip beneath the plunge zone area and allows for a repeatable process behavior. Thus, the methods presented within this paper support a sustainable industrialization of the grind-hardening process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a e :

Depth of cut (mm)

a ed :

Depth of dressing cut (μm)

a e,pl :

Depth of plunge (μm)

b d :

Active width of dressing tool (mm)

b gw :

Grinding wheel width (mm)

B :

Rotatory axis of tool spindle (–)

c :

Specific heat capacity (J/kg K)

c wt :

Carbon content (weight %)

C i :

ith Workpiece spindle speed (min−1)

C i :

ith Rotatory axis of workpiece spindle (–)

d eq :

Equivalent grinding wheel diameter (mm)

d gw :

Grinding wheel diameter (mm)

d k :

Average grit size (μm)

d k :

Dressing rod width (μm)

d r :

Form roller diameter (mm)

d w :

Workpiece diameter (mm)

d w,e :

Finished workpiece diameter (mm)

d w,s :

Unfinished workpiece diameter (mm)

e ch :

Specific inner energy of the chips (J/mm3)

F :

Force (N)

FE :

Finite element (–)

h :

Heat transfer coefficient (W/mm2 K)

HPD :

Hardness penetration depth (–)

HPS :

Helical plunge strategy (–)

HV :

Hardness Vickers (–)

k :

Thermal conductivity (W/mm K)

l g :

Geometrical contact length (mm)

l g,pl :

Plunge contact length (mm)

l s :

Sacrificial material length (mm)

l s,min :

Minimum sacrificial material length (mm)

MQL :

Minimum quantity lubrication (–)

P c :

Grinding power (W)

P c :

Area related grinding power (W/mm2)

P t :

Tool spindle power (kW)

P w :

Workpiece spindle power (kW)

\(\dot q\) :

Heat flux density (W/mm2)

q d :

Dressing speed ratio (–)

Q cl :

Coolant volume flow rate (l/min)

Q w :

Material removal rate (mm3/s)

Q w :

Specific material removal rate (mm3/mm s)

RPS :

Radial plunge strategy (–)

S :

Safety or start position (–)

S i :

ith Tool spindle speed (min−1)

S i :

ith Rotatory axis of tool spindle (–)

t c :

Contact time (s)

t c,pl :

Plunge contact time (s)

T p :

Process temperature (°C)

T p,max :

Maximum process temperature (°C)

TPS :

Tangential plunge strategy (–)

U d :

Dressing overlap ratio (–)

v c :

Cutting speed (m/s)

v f,pl :

Plunge speed (m/s)

v s :

Grinding wheel circumferential speed (m/s)

v w :

Workpiece speed (m/min)

w :

Groove width (mm)

w total :

Total groove width (mm)

X i :

ith Translatory X-axis of mill turn center (–)

Y i :

ith Translatory Y-axis of mill turn center (–)

z :

Surface depth (mm)

Z i :

ith Translatory Z-axis of mill turn center (–)

ρ:

Density (kg/mm3)

\(\varphi_{feed}\) :

Feed angle (°)

References

  1. Brinksmeier E (1982) Randzonenanalyse geschliffener Werkstuecke. Dissertation, University of Hannover

  2. Brinksmeier E (1991) Prozess- und Werkstueckqualitaet in der Feinbearbeitung. University of Hannover, Habilitation

    Google Scholar 

  3. Stephenson DJ, Jin T (2003) Physical basics in grinding. In: Proceedings of the 1st European conference on grinding, Aachen, Germany, pp 13.1–13.21

  4. Malkin S, Guo C (2008) Grinding technology—theory and application of machining with abrasives. Industrial Press, New York

    Google Scholar 

  5. Klocke F (2009) Manufacturing processes 2—grinding, honing, lapping. Springer, Berlin

    Book  Google Scholar 

  6. Wagner K (1957) Das Schleifen, ein ungewolltes Verfahren der Oberflaechen-Waermebehandlung. Haerterei-Technik und Waermebehandlung 3:83–85

    Google Scholar 

  7. Brinksmeier E, Brockhoff T (1994) Randschicht-Waermebehandlung durch Schleifen. Haerterei-Technische Mitteilungen 49(5):327–330

    Google Scholar 

  8. Brinksmeier E, Brockhoff T (1996) Utilization of grinding heat as a new heat treatment process. CIRP Ann Manuf Technol 45(1):283–286

    Article  Google Scholar 

  9. Brockhoff T (1999) Grind-hardening: a comprehensive view. CIRP Ann Manuf Technol 48(1):255–260

    Article  Google Scholar 

  10. Brinksmeier E, Minke E, Wilke T (2005) Investigations on surface layer impact and grinding wheel performance for industrial grind-hardening applications. WGP Ann Production Eng 12(1):35–40

    Google Scholar 

  11. Salonitis K, Tsoukantas G, Drakopoulos S, Stavropoulos P, Chryssolouris G (2006) Environmental impact assessment of grind-hardening process. In: Proceedings of the 13th CIRP international conference on life cycle engineering, Leuven, Belgium, vol 2, pp 657–662

  12. Reinhart G, Reinhardt S, Foeckerer T, Zaeh MF (2011) Comparison of the resource efficiency of alternative process chains for surface hardening. In: Proceedings of the 18th CIRP international conference on life cycle engineering, Braunschweig, Germany, pp 311–316

  13. Zarudi I, Zhang LC (2002) Mechanical property improvement of quenchable steel by grinding. J Mater Sci 37:3935–3943

    Article  Google Scholar 

  14. Salonitis K, Chryssolouris G (2007) Cooling in grind-hardening operations. Int J Adv Manuf Technol 33:285–297

    Article  Google Scholar 

  15. Salonitis K, Stavropoulos P, Stournaras A, Chryssolouris G (2007) Finite element modeling of grind-hardening process. In: Proceedings of the 10th CIRP international workshop on modeling of machining operations, Reggio Calabria, Italy, pp 117–123

  16. Wilke T (2008) Energieumsetzung und Gefuegebeeinflussung beim Schleifhaerten. Dissertation, University of Bremen

  17. Zaeh MF, Brinksmeier E, Heinzel C, Huntemann JW, Foeckerer T (2009) Experimental and numerical identification of process parameters of grind-hardening and resulting part distortions. WGP Ann Production Eng 3:271–279

    Article  Google Scholar 

  18. Stoehr R (2008) Untersuchung und Entwicklung des Innenrundschleifhaertens. Dissertation, University of Bremen

  19. Kolkwitz B, Foeckerer T, Heinzel C, Zaeh MF, Brinksmeier E (2011) Experimental and numerical analysis of the surface integrity resulting from outer-diameter grind-hardening. Procedia Eng 19:222–227

    Article  Google Scholar 

  20. Nguyen T, Zhang LC (2011) Realisation of grinding-hardening in workpieces of curved surfaces—part 1: plunge cylindrical grinding. Int J Mach Tools Manuf 51:309–319

    Article  Google Scholar 

  21. Mahdi M, Zhang L (2000) A numerical algorithm for the full coupling of mechanical deformation, thermal deformation and phase transformation in surface grinding. Comput Mech 26:148–156

    Article  MATH  Google Scholar 

  22. Brinksmeier E, Heinzel C, Boehm C, Wilke T (2003) Simulation of the temperature distribution and metallurgical transformations in grinding by using the finite-element-method. WGP Ann Production Eng 10(1):9–16

    Google Scholar 

  23. Duscha M, Eser A, Klocke F, Broeckmann C, Wegner H, Bezold A (2011) Modeling and simulation of phase transformation during grinding. Adv Mater Res 223:743–753

    Article  Google Scholar 

  24. Kolkwitz B, Foeckerer T, Huntemann JW, Heinzel C, Zaeh MF, Brinksmeier E (2011) Identification and analysis of part distortion resulting from grind-hardening process using computer-based methods. In: Proceedings of the 3rd international conference on distortion engineering, Bremen, Germany, pp 499–506

  25. Foeckerer T, Zaeh MF, Zhang OB (2013) A three-dimensional analytical model to predict the thermo-metallurgical effects within the surface layer during grinding and grind-hardening. Int J Heat Mass Transf 56(1–2):223–237

    Article  Google Scholar 

  26. Brockhoff T (1999) Schleifprozesse zur martensitischen Randschichthaertung von Staehlen. Dissertation, University of Bremen

  27. Hyatt G, Sahasrabudhe A (2010) Machine including grinding wheel and wheel dresser. United States Patent US 7797074, Mori Seiki USA, Inc, Sep 14, 2010

  28. Hyatt G, Sahasrabudhe A (2011) Machine tool with cooling nozzle and method for applying cooling fluid. United States Patent US 8074543, Mori Seiki USA, Inc, Dec 13, 2011

  29. Zhang LC (2007) Grind-hardening of steel surfaces: a focused review. Int J Abras Technol 1:3–36

    Article  Google Scholar 

  30. DIN EN ISO 6507 (2006) Metallische Werkstoffe – Haertepruefung nach Vickers. DIN Deutsches Institut für Normung e.V.

  31. Rowe WB (2001) Thermal analysis of high efficiency deep grinding. Int J Mach Tools Manuf 41:1–19

    Article  Google Scholar 

  32. Leblond JB, Devaux J (1984) A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size. Acta Metall 32(1):137–146

    Article  Google Scholar 

  33. Foeckerer T, Kolkwitz B, Heinzel C, Zaeh MF (2012) Experimental and numerical analysis of transient behavior during grind-hardening of AISI 52100. WGP Ann Production Eng 6(6):559–568

    Article  Google Scholar 

  34. Blondeau R, Maynier P, Dollet J (1973) Prévision de la dureté et de la résistance des aciers au carbone et faiblement alliés d’après leur structure et leur composition. Les Mémoires Scientifiques de la Revue de Métallurgie 70(12):883–892

    Google Scholar 

  35. Wittmann M (2007) Bedarfsgerechte Kuehlschmierung beim Schleifen. Dissertation, University of Bremen

  36. Johnson WA, Mehl RF (1939) Reaction kinetics in processes of nucleation and growth. Trans Am Instit Min Metall Eng 135:416–458

    Google Scholar 

  37. Avrami M (1939) Kinetics of phase change I: general theory. J Chem Phys 7:1103–1112

    Article  Google Scholar 

  38. Avrami M (1940) Kinetics of phase change II: transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224

    Article  Google Scholar 

  39. Avrami M (1941) Kinetics of phase change III: granulation, phase change, and microstructure. J Chem Phys 9:177–184

    Article  Google Scholar 

  40. Koistinen DP, Marburger RE (1959) A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall 7:59–60

    Article  Google Scholar 

  41. Noyen M (2008) Analyse der mechanischen Belastungsverteilung in der Kontaktzone beim Laengs-Umfangs-Planschleifen. Dissertation, Technical University of Dortmund

Download references

Acknowledgments

The results presented in this paper were gained in the course of a research and development project funded by DMG / Mori Seiki USA Technical Center Chicago. The novel methods and devices are covered in pending patents. The authors thank the Institute of Metal Forming and Casting (\({{\sl utg}}\)) at the Technische Universitaet Muenchen (TUM) for the opportunity to use the micro hardness test device. The authors are responsible for the contents of this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Foeckerer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyatt, G.A., Mori, M., Foeckerer, T. et al. Integration of heat treatment into the process chain of a mill turn center by enabling external cylindrical grind-hardening. Prod. Eng. Res. Devel. 7, 571–584 (2013). https://doi.org/10.1007/s11740-013-0465-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-013-0465-3

Keywords

Navigation