Skip to main content
Log in

Planar positioning stage for micro machining

  • Machine Tool
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

The following article presents an approach for a novel positioning stage as basic component of a small machine tool. It is a parallelkinematic machine (BiGlide mechanism), which converts the linear motion of two linear axes into a planar motion. The novel features, which were identified to be crucial for the transition from conventional machine tools to small ones, are: compact and precise feed axes, backlash free motion transmission, and direct measurement of the tool-center-point position and the ability of additional fine positioning. The proposed implementations are: hydraulic feed units, dry slide bearings as rotational joints, highly precise radar sensors and active variable-length struts of the parallelkinematic machine. Some of the simulation results are presented along with measurements of a currently designed prototype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wulfsberg JP, Grimske S, Kohrs P, Kong N (2010) Kleine Werkzeugmaschinen für kleine Werkstücke - Zielstellungen und Vorgehensweise des DFG-Schwerpunktprogramms 1476. wt Werkstattechnik online, Jahrgang 100, vol 11/12, pp 886–891

  2. Schubert A, Neugebauer R, Schulz B (2007) System concept and innovative component design for ultraprecision for assembly processes. Towards Synth Micro-Nano Syst Part 2

  3. Klar R, Brecher C, Wenzel C (2008) Development of a dynamic high precision compact milling machine. In: Proceedings of euspen international conference, Zurich/CH

  4. Wulfsberg JP, Redlich T, Kohrs P (2010) Square foot manufacturing: a new production concept for micro manufacturing. Prod Eng 4(1):75–83

    Article  Google Scholar 

  5. Tanaka M (2001) Development of desktop machining microfactory. Riken Rev Nr. 34, S. 46–49 Journal Code J0877A.I, Internet: http://sciencelinks.jp/j-east/article/200115/000020011501A0520776.php. (14.1.2013)

  6. Kussul E, Baidyk T, Ruiz-Huerta L, Caballero-Ruiz A, Velasco G, Kasatkina L (2002) Development of micromachine tool prototypes for microfactories. J Micromech Microeng 12:795–812

    Article  Google Scholar 

  7. Fleischer J, Seemann W, Zwick T, Ayhan S, Bauer J, Kern D, Scherr D (2012) Antriebsmodul für die Mikrobearbeitung - Parallelkinematisches hydraulisches An-triebsmodul mit Radarpositionsmessung. wt Werkstattstechnik online, Jahrgang 102, vol 11/12, Verlag Springer-VDI-Verlag GmbH & Co. KG, Düsseldorf, pp 724–729

  8. Lanza G, Fleischer J, Kotschenreuther J, Peters J, Schlipf M (2007) Statistical modelling of process parameters in micro cutting. J Eng Manuf B 222(1):15–22

    Article  Google Scholar 

  9. Stan SD, Maties V, Balan R (2007) Optimal design of a 2DoF micro parallel robot using genetic algorithms.In: IEEE international conference on integration technology, pp 719–724

  10. Astashev VK, Babitsky VI (2007) Ultrasonic processes and machines: dynamics, control and applications. Springer, Berlin Heidelberg. ISBN 978-3-540-72060-7

    Google Scholar 

  11. Armstrong-Helouvry B (1991) Control of machines with friction. Kluwer Academic Publishers, Dordrecht. ISBN 0-7923-9133-0

    Book  MATH  Google Scholar 

  12. Fleischer J, Bauer J (2012) Highly integrated piezo-hydraulic feed axis. 5th CIRP Conference on high performance cutting, 4.6.2012-6.6.2012, Zurich, Switzerland, Procedia CIRP 1, pp 342–346

  13. Ayhan S, Pahl P, Kayser Th, Pauli M, Zwick T (2011) Frequency estimation algorithm for an extended FMCW radar system with additional phase evaluation. In:Proceedings of the German microwave conference GeMiC, Darmstadt, Germany

  14. Ayhan S, Pauli M, Kayser T, Scherr S, and Zwick T (2011) FMCW radar system with additional phase evaluation for high accuracy range detection. In: Proceedings of the European radar conference—EuRAD, Manchester, England, pp 117–120

  15. Ayhan S, Vu-Duy V, Pahl P, Scherr S, Hübner M, Becker J, Zwick T (2012) FPGA controlled DDS based frequency sweep generation of high linearity for FMCW radar systems. In: Proceedings of the German microwave conference GeMiC, Ilmenau, Germany

  16. Pauli M, Ayhan S, Scherr S, Rusch C, Zwick T (2012) Range detection with micrometer precision using a high accuracy FMCW radar system invited paper, in 9th international multi-conference on systems, signals and devices (SSD), Chemnitz, Germany

  17. Scherr S, Ayhan S, Pauli M, Zwick T (2012) Accuracy limits of a K-band FMCW radar with phase evaluation. In: Proceedings of the European radar conference—EuRAD, Amsterdam, Netherlands

  18. Pohl N, Jaschke T, Scherr S, Ayhan S, Pauli M, Zwick T, Musch T (2013) Radar measurements with micrometer accuracy and nanometer stability using an ultra-wideband 80 GHz radar system. In: IEEE topical meeting on wireless sensors and sensor networks (WiSNet) Austin, Texas

Download references

Acknowledgments

This paper is based on investigations of the collaborative research program SPP1476, which is kindly supported by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, J., Kern, D., Ayhan, S. et al. Planar positioning stage for micro machining. Prod. Eng. Res. Devel. 7, 511–516 (2013). https://doi.org/10.1007/s11740-013-0474-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-013-0474-2

Keywords

Navigation