Skip to main content

Advertisement

Log in

Novel compensation of axial thermal expansion in ball screw drives

  • Machine Tool
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Novel functional materials in the field of machine tools such as shape memory alloys are capable to convert thermal energy into mechanical energy by generating work. Besides, their self-sensing properties and high energy density make them suitable to compensate thermal deformations. Manufacturing requirements concerning machine tools and machining centers can be summarized in a high productivity, a high reliability (low-maintenance) and a high accuracy/precision. The latter machine design parameter depends almost on linear drive systems, which are responsible for the relative distance between workpiece and tool center point. Their positioning performance is limited, among others, to changes in thermal conditions; even with cooling systems that represent about 90 % of the overall energy consumption of the machine. Therefore, thermal errors in machine tools are currently an issue to overcome. Within the scope of this work, shape memory alloys have been integrated in ball screw drives in order to achieve a thermal stable machine transmission component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AgCd:

Silver cadmium

BSD:

Ball screw drive

CuAlNi:

Copper aluminium nickel

ISO:

International Organization for Standardization

NiAl:

Nickel aluminium

NiTi:

Nickel titanium

OWSME:

One-way shape memory effect

PTT:

Phase transformation temperature

SIM:

Stress-induced martensite

SMA:

Shape memory alloy

SME:

Shape memory effect

TIM:

Temperature-induced martensite

TWSME:

Two-way shape memory effect

α :

Nominal contact angle between ball and groove

α th,n :

Coefficient of thermal expansion of the nuts

α th,s :

Coefficient of thermal expansion of the shaft

α th,w :

Coefficient of thermal expansion of the balls

\(\varDelta L_{\sum _{PR}}\) :

SMA pushrods recovery stroke

\(\varDelta l_{b/t,pr}\) :

Elastic axial deflection due to preload

\(\varDelta l_{b/t}\) :

Deflection backlash

\(\varDelta l_{th}\) :

Thermal backlash

δ :

Displacement

δ PSMA :

Displacement due to the initial prestress

ε :

Strain

σ :

Stress

σ f :

Stress at which the detwinning of martensite finishes

σ sl :

Stress at which the dislocation glide begins

σ s :

Stress at which the detwinning of martensite starts

φ :

Shaft lead angle

A :

Constant

A f :

Austenitic finish temperature at zero stress

A p :

Austenitic peak temperature at zero stress

A st :

Stable austenitic phase

A s :

Austenitic start temperature at zero stress

A ust :

Unstable austenitic phase

B :

Constant

b :

Nut length

b m :

Length of a half nut

C :

Constant

C a :

Basic dynamic rated load

D 0 :

Nominal NiTi wire diameter

d 0 :

Nominal shaft diameter

D pw :

Pitch circle diameter

D w :

Ball diameter

E :

Elastic modulus

F :

Force

F P :

Nominal preload

\(F_{{\sum}_{PR}}\) :

SMA pushrods recovery force

F pr/th :

Preload variation due to thermal changes

F PSMA :

Initial prestress of the SMA element

i :

Number of active threads

k :

Stiffness ratio

L 0 :

Length of a SMA pushrod

l 1 :

Shaft thread length

L T :

Length of the NiTi wire

M dtw :

Detwinned martensite

M d :

Temp. at which martensite is not longer stress-induced

M f :

Martensitic finish temperature at zero stress

M s :

Martensitic start temperature at zero stress

M tw :

Twinned martensite

N :

Number of SMA pushrods

n cr :

Critical speed

P h :

Shaft Lead

R b/t :

Ball contact zone stiffness

\(R_{{\sum}_{SMA}}\) :

Total stiffness of SMA pushrods

R BSD :

Ball screw drive overal axial stiffness

R SMA :

Shape memory alloy stiffness

R SPRING :

Spring stiffness

S a :

Inherent clearance backlash

T :

Temperature

T n :

Average temperature in the nuts

T s :

Average temperature in the shaft

T w :

Average temperature in the balls

v max :

Maximum linear speed

References

  1. Buehler WJ, Gilfrich JV, Wiley RC (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34(5):1475–1477. doi:10.1063/1.1729603. http://scitation.aip.org/content/aip/journal/jap/34/5/10.1063/1.1729603

    Google Scholar 

  2. Duerig T (1990) Engineering aspects of shape memory alloys. Butterworth-Heinemann Limited, London

    Google Scholar 

  3. Stöckel D (1988) Legierungen mit Formgedächtnis: Industrielle Nutzung des Shape-Memory-Effektes. Kontakt und Studium-Grafenbau-Expert Verlag. Expert-Verlag GmbH

  4. Slocum A (1992) Precision machine design. Society of Manufacturing Engineers, Dearborn

    Google Scholar 

  5. Jayendran A (2006) Mechanical Engineering: Grundlagen des Maschinenbaus in englischer Sprache. B.G. Teubner Verlag/GWV Fachverlage GmbH, Wiesbaden

  6. Pabla B (1994) CNC machines. Wiley Eastern Limited, New Delhi

    Google Scholar 

  7. Bhandari V (2010) Design of machine elements. Tata McGraw-Hill, New York

    Google Scholar 

  8. ISO (2011) Ball screws—part 5: static and dynamic axial load ratings and operational life. ISO 3408-5:2006, International Organization for Standardization, Geneva, Switzerland

  9. NTN-SNR (2011) SNR linear motion: ball screws. Brochure, NTN-SNR Roulements

  10. Großman K (2003) Instationäres thermoelastisches Verhalten von Vorschubachsen mit bewegtem Wälzkontakt. TU Dresden

  11. ISO (2011) Ball screws—part 4: static axial rigidity. ISO 3408-4:2006, International Organization for Standardization, Geneva, Switzerland

  12. Hong Kui J et al (2012) Comparative study on dynamical performance of hybrid ceramic and steel ball screw mechanism based on multi-body dynamic simulation. Adv Mater Res 532–533:229–233 http://www.scientific.net/AMR.532-533.229

  13. Yang AS, et al (2013) Thermal deformation estimation for a hollow ball screw feed drive system. In: Proceedings of the world congress on engineering, vol 3

  14. Thrasher PC (2001) Adjustable preload spindle. German patent DE 69900311D1

  15. Spur G, Hoffmann E, Paluncic Z, Benzinger K, Nymoen H (1988) Thermal behaviour optimization of machine tools. CIRP Ann Manuf Technol 37(1):401–405. doi:10.1016/S0007-8506(07)61664-3. http://www.sciencedirect.com/science/article/pii/S0007850607616643

  16. Pajor M, Zaplata J (2011) Compensation of thermal deformations of the feed screw in a cnc machine tool. Adv Manuf Sci Technol 35(4):9–7

    Google Scholar 

  17. RACO ball screws. Brochure, RACO Elektro-Maschinen GmbH, Schwelm (2004)

  18. Präzisions-Kugelgewindetriebe. Brochure, WARNER ELECTRIC GmbH, Wolfschlungen (1988)

  19. AM-Kugelgewindetriebe. Brochure A. Mannesmann Maschinenfabrik GmbH und CO. KG (1989)

  20. Good RSJ (1969) Demande de brevet d’invention. Patent 2.014.053, Institut nationale de la propriété industrielle

  21. Johnstone R (1984) Ball nut having adjustable preloading. United States patent US 4,487,087

  22. Black JE (1998) Ball screw drive with dynamically adjustable preload. United States patent US 5,704,250

  23. Weule H, Golz H (1991) Preload-control in ball screws: a new approach for machine tool building? CIRP Ann Manuf Technol 40(1):383–386. doi:10.1016/S0007-8506(07)62012-5. http://www.sciencedirect.com/science/article/pii/S0007850607620125

  24. Chen J, Dwang I (2000) A ballscrew drive mechanism with piezo-electric nut for preload and motion control. Int J Mach Tools Manuf 40(4):513–526. doi:10.1016/S0890-6955(99)00078-4. http://www.sciencedirect.com/science/article/pii/S0890695599000784

  25. Andonegui PM (2007) Husillo a bolas precargado mediante dos motores eléctricos. Spain patent ES 2,264,847

  26. Frey S, Walther M, Verl A (2010) Periodic variation of preloading in ball screws. Prod Eng 4(2–3):261–267. doi:10.1007/s11740-010-0207-8

    Google Scholar 

  27. Fleischer J, Herder S (2012) Adaptronic ball screw for the enhancement of machine precision. Procedia CIRP 1(0):621–626. doi:10.1016/j.procir.2012.05.010. http://www.sciencedirect.com/science/article/pii/S2212827112001114

  28. Chang CF et al (2009) A theory of ball-screw thermal compensation. In: Proceedings of the international multiconference of engineers and computer scientists, vol 2

  29. Davim J (2008) Machining: fundamentals and recent advances. Springer, Berlin

    Google Scholar 

  30. Bryan J (1990) International status of thermal error research (1990). CIRP Ann Manuf Technol 39(2):645–656. doi:10.1016/S0007-8506(07)63001-7. http://www.sciencedirect.com/science/article/pii/S0007850607630017

Download references

Acknowledgments

The Cluster of Excellence “Energy-Efficient Product and Process Innovations in Production Engineering” (eniPROD®) is funded by the European Union (European Regional Development Fund) and the Free State of Saxony.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Iñaki Navarro y de Sosa or André Bucht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navarro y de Sosa, I., Bucht, A., Junker, T. et al. Novel compensation of axial thermal expansion in ball screw drives. Prod. Eng. Res. Devel. 8, 397–406 (2014). https://doi.org/10.1007/s11740-014-0528-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-014-0528-0

Keywords

Navigation