Skip to main content
Log in

Influences on the thermal behavior of linear guides and externally driven spindle systems

  • Machine Tool
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

This paper focusses on the investigation of thermo-elastic behavior of single components of machine tools. The components are divided into thermal active (spindle, bearings, linear guides, ball screws, etc.) and passive components (all structural elements, which do not produce but transfer and emit heat). To model a whole machine tool structure, the thermo-elastic behavior of each component and the interactions have to be identified. The research field of linear guide and spindle systems includes the experimental investigation on special test rigs. In this paper, the measurement setup, test rigs and experimental results of linear guide systems and an externally driven spindle are presented. The test rigs allow for measurement of the temperature distributions in the components and friction forces for different velocities of the shoe resp. spindle speed and loads. Temperatures are measured by thermo-couples, resistance thermometers and an infrared camera. These results support the compensation or correction of manufacturing inaccuracies caused by the thermo-elastic behavior of linear guides and spindle systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Bryan J et al (1990) International status of thermal error research. CIRP Ann 39(2):645–656

    Article  MathSciNet  Google Scholar 

  2. Mayr J et al (2012) Thermal issues in machine tools. CIRP Ann Manuf Technol 61(2):771–791

    Article  MathSciNet  Google Scholar 

  3. Weck M et al (1995) Reduction and compensation of thermal errors in machine tools. CIRP Ann Manuf Technol 44(2):589–598

    Article  Google Scholar 

  4. Uhlmann E et al (2008) Compensation of thermal deformations at machine tools using adaptronic CRP-structures. Proceedings of the 41st CIRP Conference on Manufacturing Systems, pp 183–186

  5. Weck M et al (2006) Werkzeugmaschinen – Konstruktion und Berechnung. Springer, Berlin, pp 76–83

    Google Scholar 

  6. Brecher C et al (2010) Compensation of thermo-dependent machine tool deformations due to spindle load based on reduced experimental procedure and modeling effort—synthesis between direct and indirect compensation. Eighth International Conference on High Speed Machining, Metz/France, pp 89–95

  7. Lee J-H et al (2001) Development of thermal error model with minimum number of variables using fuzzy logic strategy. J Mech Sci Technol 15(11):1482–1489

    Google Scholar 

  8. Jedrzejewski J et al (2007) Precise modeling of HSC machine tool thermal behavior. J Achiev Mater Manuf Eng 24(1):245–252

    Google Scholar 

  9. Yang JG et al (2002) An application of real-time error compensation on an NC twin-spindle lathe. J Mater Process Technol 129:474–479

    Article  Google Scholar 

  10. Yovanovich M (2005) Four decades of research on thermal contact, gap, and joint resistance in microelectronics. IEEE Trans Compon Packag Technol 28(2):182–206

    Article  Google Scholar 

  11. Brecher C, Beck E, Bock G, Broos A, Epple A, Fey M, Fischer A, Herfs W, Klement R, Lohse W, Özdemir D, Wagner P (2014) Realer Nutzen aus virtuellen Produktionsmaschinen. Proceedings of the 28th Aachener Werkzeugmaschinen-Kolloquium pp 85–88

  12. Brecher C et al (2011) Thermisch bedingtes Verformungsverhalten von Werkzeugmaschinen. ZWF, No 106, pp 663–666

  13. Kunc M (2013) Identifikation und Modellierung von nichtlinearen Dämpfungseffekten in Vorschubachsen für Werkzeugmaschinen. Apprimus Verlag, Aachen

    Google Scholar 

  14. Jorgensen B (1996) Robust modeling of high-speed spindle bearing dynamics under operating conditions. Purdue, West Lafayette

    Google Scholar 

  15. FAG (1998) The design of rolling bearing mountings, design. Publ. No. WL 00 200/5 EA

Download references

Acknowledgments

The Authors want to thank the DFG (German Research Foundation) for financial support. The represented findings result from the subproject B03 “Investigation of Components and Assembly Groups” of the special research field SFB/Transregio 96 “Thermo-energetic design of machine tools”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Neus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brecher, C., Fey, M., Neus, S. et al. Influences on the thermal behavior of linear guides and externally driven spindle systems. Prod. Eng. Res. Devel. 9, 133–141 (2015). https://doi.org/10.1007/s11740-014-0589-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-014-0589-0

Keywords

Navigation