Skip to main content

Advertisement

Log in

Automated heat source calibration for the numerical simulation of laser beam welded components

  • Computer Aided Engineering
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

The well-known advantages of laser beam welding, like the low overall energy deposition into the welding zone or the high processing speed, have led to increased industrial use of this joining process. In order to simulate the heat input and to draw conclusions for experimental application, numerous tasks have to be performed manually. Moreover, expert knowledge is necessary to build thermal FE models of a welding process and to calibrate a heat source to reconstruct the temperature field. Hence, the automation of conventional steps can contribute to more efficient industrial use of the FE simulation. In order to more easily simulate the welding process, an approach for automating the essential steps is proposed in this paper. Thus, special attention is paid to the use of image processing tools and optimization algorithms. The application of this approach precisely depicts the heat deposition and simultaneously decreases the workload for the user.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Belitzki A, Zaeh MF (2015) The accuracy of calculated component distortions using the weld pool length to calibrate the heat source. In: Laser Institute of America (ed) Proceedings of the 34th international congress on applications of lasers & electro-optics, vol 34. Laser Institute of America (LIA pub)

  2. Bonnans JF (2006) Numerical optimization: theoretical and practical aspects, 2nd edn. Universitext. Springer, Berlin [u.a.]

  3. Burger W, Burge MJ (2008) Digital image processing: an algorithmic introduction using Java. Texts in computer science. Springer, New York

    Book  Google Scholar 

  4. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell PAMI 8(6):679–698. doi:10.1109/TPAMI.1986.4767851

    Article  Google Scholar 

  5. Franco A, Romoli L, Musacchio A (2014) Modelling for predicting seam geometry in laser beam welding of stainless steel. Int J Therm Sci 79:194–205. doi:10.1016/j.ijthermalsci.2014.01.003

    Article  Google Scholar 

  6. Goldak J, Chakravarti A, Bibby M (1984) A new element model for welding heat sources. Metall Trans B 15(2):299–305

    Article  Google Scholar 

  7. Heinze C, Schwenk C, Rethmeier M (2012) Effect of heat source configuration on the result quality of numerical calculation of welding-induced distortion. Simul Model Pract Theory 20(1):112–123. doi:10.1016/j.simpat.2011.09.004

    Article  Google Scholar 

  8. Karkhin VA, Homich PN, Michailov VG (2007) Models for volume heat sources and functional-analytical technique for calculating the temperature fields in butt welding. In: Cerjak H, Bhadeshia H, Kozeschnik E (eds) Proceedings of the 8th international seminar numerical analysis of weldability, mathematical modelling of weld phenomena, vol 8. Verlag der Technischen Universität Graz, Graz, pp 819–833

    Google Scholar 

  9. Lanser S, Eckstein W (1991) Eine Modifikation des Deriche-Verfahrens zur Kantendetektion. In: Brauer W, Radig B (eds) Mustererkennung 1991, Informatik-Fachberichte, vol 290. Springer, Berlin, pp 151–158. doi:10.1007/978-3-662-08896-8

    Chapter  Google Scholar 

  10. Otto A, Koch H, Leitz KH, Schmidt M (2011) Numerical simulations—a versatile approach for better understanding dynamics in laser material processing. Phys Procedia 12:11–20. doi:10.1016/j.phpro.2011.03.003

    Article  Google Scholar 

  11. Pittner A (2012) A contribution to the solution of the inverse heat conduction problem in welding simulation, BAM-Dissertationsreihe, vol 85. Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin

  12. Radaj D (1999) Schweißprozesssimulation: Grundlagen und Anwendungen, Fachbuchreihe Schweisstechnik, vol. Bd. 141. Verl. für Schweißen und Verwandte Verfahren, DVS-Verl., Düsseldorf

  13. Radaj D (2002) Eigenspannungen und Verzug beim Schweissen: Rechen-und Messverfahren, Fachbuchreihe Schweisstechnik, Bd. 143. Verlag für Schweißen und Verwandte Verfahren, DVS-Verlag, Düsseldorf

  14. Rao SS (2009) Engineering optimization: theory and practice, 4th edn. Wiley, Hoboken

    Book  Google Scholar 

  15. Schober A (2014) Eine Methode zur Wärmequellenkalibrierung in der Schweißstruktursimulation, Forschungsberichte iwb, vol 291. Utz Verlag, München

    Google Scholar 

  16. Zäh MF, Kronthaler M, Oefele F (2010) Bifokal-Hybrid-Laserstrahlschweißen: Eine potentialträchtige Technik zum Fügen schwer schweißbarer Aluminiumlegierungen. wt Werkstattstechn Online 100(6):454–460

    Google Scholar 

Download references

Acknowledgments

This paper is partly based on investigations of the subproject B4-Simulation of the Thermal Joining of Lightweight Frame Structures—of the Transregional Collaborative Research Centre/Transregio 10, which was kindly supported by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Belitzki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belitzki, A., Marder, C., Huissel, A. et al. Automated heat source calibration for the numerical simulation of laser beam welded components. Prod. Eng. Res. Devel. 10, 129–136 (2016). https://doi.org/10.1007/s11740-016-0664-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-016-0664-9

Keywords